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From unicellular protists to the largest megafauna and flora, all

eukaryotes depend upon the organelles and processes of the

intracellular membrane trafficking system. Well-defined

machinery selectively packages and delivers material between

endomembrane organelles and imports and exports material

from the cell surface. This process underlies intracellular

compartmentalization and facilitates myriad processes that

define eukaryotic biology. Membrane trafficking is a landmark

in the origins of the eukaryotic cell and recent work has begun

to unravel how the revolution in cellular structure occurred.
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The sophisticated last eukaryotic common
ancestor
Many studies of membrane trafficking evolution focused

on determining the organelles and proteins present in the

last eukaryotic common ancestor (LECA), a hypothetical

organism living �109 years ago. As discussed in detail

elsewhere [1,2], the numbers of predicted transport path-

ways and/or components within the LECA likely

exceeded many extant organisms and LECA possessed

all the canonical endomembrane organelles [1], extend-

ing to a cis, medial and trans-cisternal differentiated Golgi

complex [3�]. These inferences also provide insights into

the basic mechanisms of vesicle formation and fusion [1].

LECA is deduced to have possessed at least nine distinct

vesicle coat complexes (including clathrin/AP1-5, COPI,

TSET, COPII, retromer, ESCRT), ARF/ARF-like

GTPases and their regulators [1,2]. LECA also possessed

complex fusion machinery, including an extensive

SNARE complement [4��], multisubunit tethering
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complexes [5], Rab GTPases [6–8] and regulatory factors

[9]. Thus, LECA was capable of endocytosis, secretion

and complex sorting, and while this is perhaps surprising,

metabolism, cytoskeleton, mitochondrial functions,

nuclear transport and many other cellular systems dem-

onstrate similar predicted complexity.

As new components and pathways are discovered within

transport and sorting machinery, their relevance to LECA

and subsequent evolution can be addressed, for example

recent descriptions of vesicle formation machinery such

as TSET [10], Tepsin [11,12�], TSSC1 [13�] and novel

clathrin adaptors [14�]. As a complex LECA should now

be taken as a starting assumption, within trafficking

systems and elsewhere, this complexity leads to two

questions; what preceded LECA and how has subsequent

evolution unfolded?

How did complex membrane trafficking
evolve?
The most basic evolutionary question, how did an endo-

membrane system originate, cannot be resolved by recon-

structing LECA, as this represents an already advanced

cell. As we assume complexity arose from a simpler state,

this implies that transition from the first eukaryotic com-

mon ancestor (FECA; the first differentiated lineage from

archaea giving rise only to organisms possessing some

eukaryotic traits) to LECA required a revolution in cel-

lular mechanisms (Figure 1). Promisingly, details of this

revolution are now being discerned [15].

The basic vesicle trafficking machinery involves several

protein families, each member of which functions at a

specific organelle or transport pathway. Furthermore,

organelle and pathway identity arises via combinatorial

protein–protein interactions [16]. Different combinations

of Rabs, SNAREs and tether complexes interact and

substituting one or a few components can alter intracel-

lular localisation. As these families evolved via gene

duplication (and subsequent neofunctionalisation

(Figure 1)), a mechanism for organelle evolution can

be proposed; that organelle complexity arose where a

primordial set of vesicle formation and fusion proteins

allowed for transport and, through gene duplications and

co-evolution of interacting proteins, developed new spec-

ificity. One pathway became two, and by simple iteration,

many. This mechanism, the ‘organelle paralogy

hypothesis’, found experimental support and has been

elaborated upon repeatedly since the original proposal

[2,9,17�,18,19�,20,21].
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Generation of complexity. (Panel a) Timeline for alterations to complexity with cells and genomes across the history of life, with emphasis on the

eukaryotic lineage. The ‘Complexity Index’ is an abstract concept to express compartmental sophistication, and is assumed to have increased

during the ascent of eukaryotes (gray line), including the contributions from the archaea and bacterial (not shown) donors. Significantly, there are

examples of extant taxa where the number of compartments, as predicted by the size of the Rab gene cohort, have increased (red), decreased

(purple, teal) or remained approximately constant (blue) from the predicted state in the LECA. OoL; Origin of life. Note that points of complexity

increase, as well as the curve topology, are arbitrary and for illustrative purposes; the true topology is unknown. (Panel b) Mechanisms for the

generation of molecular complexity, based on examples from Rab protein evolution. Proteins are shown as circles, and genes as rectangles. The

open circle denotes a modified protein, for example phosphorylated or acetylated.
An important corollary to the concept of trafficking com-

plexity emerging via incremental steps based on gene

duplications is that, if the order of these steps can be

resolved, the order in which the pathways originated

would emerge. While significant challenges remain, over

two-thirds of predicted LECA Rabs fall into either an

endocytic or broadly secretory grouping [7]. Adaptins can

be resolved to allow inference of multiple independent

origins of pathways for internalization from the cell sur-

face and post-Golgi transport [10]. Similar information for

any membrane trafficking protein can, theoretically,

determine the order of organelle origins, presently an

exciting prospect.

While adaptin complex genes are easily identifiable, a

deep connection is also likely present between many

additional coat proteins. Homology here is based on
www.sciencedirect.com 
retention of one or more b-propellers followed by an

a-solenoid, a ‘protocoatomer’ configuration, and mem-

bers can be grouped into two subfamilies, with distinct

structural features (Figure 2). Importantly this encom-

passes more complexes than classic coat proteins and

includes the nuclear pore and SEA complexes and intra-

flagellar transport system, uniting the origins of most

nonendosymbiotic organelles [22��]. Reconstructing the

evolutionary relationships remains a tremendous chal-

lenge due to massive sequence divergence and recent

attempts have provided only partial solutions (e.g. [23�]).
Further, the NPC may contain multiple protocoatomer

subfamily architectures, suggesting an origin post-dating

establishment of several organelles [24,25,26�].

There are relatively few hypotheses for membrane

trafficking’s ultimate origin, and most are part of models
Current Opinion in Cell Biology 2018, 53:70–76
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Figure 2
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Paradigms for molecular evolution of eukaryotic cellular compartments and function. (Top) The protocoatomer hypothesis is predicated on the

recognition that components of many membrane coating complexes share a particular architecture, specifically b-propeller plus a-solonoid

secondary structural elements. While a and b structural elements are obviously common and present in all genomes, the combination of an N-

terminal b-propeller plus a-solonoid configuration appears to be a hallmark of membrane deforming complexes, as well as being a eukaryotic

signature. Complexes incorporating these proteins include the classical coats (COPI, COPII, clathrin), as well as the nuclear pore complex (NPC),

adaptins and several others. Current evidence supports the following model: b + a proteins are encoded on the same cistron in Asgard archaea

(but not as a single gene), which are presumed to have become fused at least by the time of the first eukaryotic common ancestor (First).

Evidence suggests that there are at least two distinct types of protocoatomer in extant eukaryotes, based on the presence of several distinct

accessory domains as well as structural criteria; these are arbitrarily termed type I and type II. It is unclear when these arose, but presumed an

early event in transitioning from the first to last (Last) eukaryotic common ancestor (red/teal). Subsequent paralog expansions led to many distinct

coats. Type I, which contains the NPC and COPII, appears more structurally diverse than Type II. Significant details for protocoatomer evolution

remain to be determined. b-propeller structures are represented by a circle and a-solonoid by a curved bar of varying length. (Lower) Expanded

version of the organelle paralogy hypothesis. Organelles are defined by the presence of members of paralog families, which include the Rab and

SNARE proteins. Here we assume that three proteins (teal) are sufficient to define an organelle. Duplication of the circular factor allows the second

copy (red) to neofunctionalise, as the original complex is retained. Initially this factor is able to interact with all of the original complex factors, but

mutations will facilitate a change in specificity and the ability to bind a red eclipse and subsequently a red rounded rectangle. These latter factors

are also the products of paralog expansion. Further mutation of the red circle (blue) can allow both a similar trajectory as before, as well as the

possible sharing of components, again assisted by the paralogous nature of the various components.
explaining the origin of the eukaryotic cell itself

[27–31,32��]. The best of these suggest both a coherent

model as well as incorporate existing data objectively. As

new data arises, for example the demonstration that

hybrid archael and bacterial lipid membranes are bio-

chemically and biologically viable [33��], some theories

need to be modified or discarded in favour of hypotheses

better supported by data. Perhaps the most available data

at present, and thus best incorporated into models is the

phylogenetic affinity and the relevant origins of mem-

brane-trafficking components. For the overwhelming

majority of these proteins, origins are of archaeal ancestry,

supporting an autogenous evolution rather than

endosymbiosis.
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This model was provided a major boost with descriptions

of the Lokiarchaeota [34] and subsequently a larger clade

of related taxa, the Asgardarchaeota [35��]. Asgardarch-

aeota biology is inferred via metagenomic assemblies

from locales as exotic as deep-sea sediments and thermal

springs to those as mundane as marine estuaries. Very

recent environmental surveys have uncovered additional

candidate Asgardarchaea-related sequences suggesting

wide prevalence [36]. Phylogenetics indicates that eukar-

yotes emerged from within the Asgardarchaea, that is,

that many Asgardarchaea genes are the most similar of all

prokaryote sequences to their eukaryote descendants.

These metagenomes encode proteins previously consid-

ered eukaryote-specific, including ESCRT subcomplex I
www.sciencedirect.com
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and II components, longin domain-containing proteins,

expanded GTPase families similar to Rabs and Arf-like

superfamilies, [37,38,39�], putative COPII components

and possible protocoatomer-related proteins. These fea-

tures are consistent with the Asgardarchaea as an ancestral

source for many membrane-trafficking components

[35��,37,38]. However, technical and methodological con-

cerns regarding these genomes have been raised which

need to be addressed, not least the authenticity of the

metagenomic assemblies as derived from a single species

(see [40��,41,42] for the latest in this debate). Isolation

and culturing of an Asgardian remains crucial for evaluat-

ing their contribution to eukaryogenesis.

How has the complex membrane trafficking
system modified in LECA’s descendants?
Understanding the origins of LECA complexity is one

part of evolutionary study of membrane-trafficking; the

counterpart is defining processes that shaped complexity

post-LECA and what diversity has since arisen. Some

components, for example, COPI and AP1 complexes, are

near ubiquitous [10], suggesting they are both ancient

and indispensable. Other components expanded in cer-

tain lineages or introduced novel domains [14�,43�].
Other components still, such as AP5 [44] and DSCR3

[45], are present in organisms spanning eukaryotic diver-

sity, but frequent losses suggest that these ancient

complexes are expendable, under some conditions. Sev-

eral components (e.g. the SNARE NPSN) are lost from

animals and fungi, indicating that opisthokonts have

lineage-specific gains and losses, just as any other. While

parasite genomes tend to be reduced, there are striking

examples of gene family expansions in Entamoeba
[46–48] and Trichomonas [48,49].

Inferring biology from genome sequence implies func-

tional homology, that is, that a given gene retains the

same function in different lineages. Evidence supports

this for many gene products, including Rab5, 7 and 11,

AP1 and 2 and ESCRT (reviewed extensively in [37,38]).

Examples where functional homology is less apparent

include organelles absent from animals or fungi, such as

the osmoregulatory contractile vacuoles and modified

secretory lysosomes associated with predation or parasit-

ism, for example, mucocysts in ciliates and rhoptries in

apicomplexa.

Trypanosomatids: a detailed case study
Understanding the extent to which adaptations are asso-

ciated with smaller scale changes requires fine-scale

investigations coupling genomics and cell biology.

One well studied group of protists are the Euglenozoa,

which are distantly related to animals and fungi

(Figure 3). A vast array of lifestyles within the lineage,

ranging from the free living and photosynthetic Euglena
spp., [57] to Bodo saltans, [58�] a phagophore, and many

parasitic forms, including trypanosomes and Leishmania,
www.sciencedirect.com 
provides a perfect opportunity for evaluating predictions

of post-LECA trafficking trends. High quality genome

and experimental resources allow this to be investigated

with some rigour.

Trypanosome endocytosis is exclusively clathrin-medi-

ated, with an intriguing amalgam of conserved proteins,

for example, epsinR, CALM, AAK and AP-1, losses, for

example, Dab2, and lineage-specific innovations con-

served throughout kinetoplastids, for example, TbCAPs

[14�,50,51]. An emerging paradigm is of a conserved core

with a secondary ‘shell’ of lineage-specific proteins, albeit
frequently retaining common architectural features. For

example TbCAP80 and TbCAP141 are both phosphoi-

nositide-binding proteins with an N-terminal lipid-inter-

acting domain and disordered C-terminus, similar to

organisation of ANTH and ENTH proteins [14�,51].
Similarly, kinetoplastid exocytic pathways are modified,

with an additional lineage-specific subunit, Exo99, as a

component of an otherwise conventional octameric exo-

cyst Boehm et al. [52�] The functional implications of

these innovations remain cryptic.

A major overall trend across the lineage is of secondary

loss in the Rab and SNARE proteins, albeit following a

gradual shift in complexity. Kinetoplastids retain essen-

tially all SNARE proteins predicted to be present in

LECA, but lack several Rabs, including Rab8, 34 and

50. Whilst the former functions in post-Golgi transport,

Rab34 and Rab50 are uncharacterised. Simplification of

anterograde pathways is unsurprising as exocytosis in

trypanosomes does not appear to be significantly differ-

entiated into multiple pathways. Within the kinetoplas-

tids, Bodo saltans has the largest Rab and SNARE gene

complement, which undergoes a gradual diminishment as

one progresses through the Leishmanias, American try-

panosomes (Trypanosoma cruzi and relatives) and finally to

African trypanosomes (T. brucei and relatives) (Figure 3).

Significantly, the plant parasitic Phytomonads are also

reduced. These alterations of trafficking complexity

likely reflect life style; for example B. saltans must adapt

to rapid environmental and nutrient changes and has a

large repertoire of Rab7 and Rab32-related Rabs facilitat-

ing autophagic and complex digestive functions, as well

potentially as the osmoregulatory contractile vacuole.

Leishmania and T. cruzi invade host cells and retention

of a more complex transport system by T. cruzi, may

reflect this and specifically a need to adapt and exploit

autophagic mechanisms if resources are scarce. Both

Phytomonads and African trypanosomes are distin-

guished by remaining extracellular in their respective

plant and mammalian hosts; it is probably significant that

both lack Rab32, have very few lineage-specific Rab

proteins and also, in the case of Phytomonas, have a

significant loss of the endocytic Rab21 and 28. Signifi-

cantly, African trypanosomes lost the AP-2 complex as an

adaptation to antigenic variation and a need for extremely
Current Opinion in Cell Biology 2018, 53:70–76
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Figure 3
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Phylogeny of eukaryotes, emphasising the kinetoplastida. (Panel a) The tree is based on most recent views of eukaryotic relationships, and each

clade is accompanied by an illustrative diagram for a representative species. Positions of LECA and FECA are indicated in red, and kinetoplastida

are highlighted in teal. (Panel b) Evolutionary relationships between the organisms discussed in the text, together with indications of where

reconstruction suggest various proteins have been lost or gained during evolution.
rapid endocytosis for immune evasion [53]. However,

recently we found that T. cruzi, which does possess the

genes for all AP-2 subunits, apparently does not use this

complex for endocytosis [54], indicating that AP-2 inde-

pendent endocytosis is more widespread than inferred by

comparative genomics and perhaps serves to underscore

the importance of experimental study. Most recently, the

genome sequence for Perkinsela, an intracellular kineto-

plastid parasite with a greatly reduced genome has been

reported; this organism has but three Rab1/Rab2-like

proteins [55��], providing a provocative example of the

flexibility of the trafficking system and its evolution.

Conclusion
Eukaryotic diversity is immense and has direct bearing

uponourhealth, agricultureandenvironment. Understand-

ing how such distinctiveness came to be is a major goal of

evolutionary cell biology [56]. Genome sequencing, direct

experimentation and increased sampling of environments

have all revealed pathways that shaped the multiplicity of

cellular forms and architectures, with membrane trafficking

retaining a position centre stage. With considerable knowl-

edge, we are in the exciting position of beginning to

understand the origins of trafficking, and to explore the

many facets of these pathways in multiple lineages.
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