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Reductionist Pathways for Parasitism in
Euglenozoans? Expanded Datasets Provide
New Insights
Highlights
Genome streamlining and the loss of
certain metabolic pathways predate
switches to parasitism in the evolution
of Euglenozoa and are the result of a
multistep process.

Numerous features previously consid-
ered trypanosomatid-specific are pres-
ent also in the free-living euglenozoans.
They include nutrient-triggered attach-
ment to surfaces, polycistronic transcrip-
tion, trans-splicing, trypanothione, the
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freshwater euglenids and free-living kinetoplastids, the closest known nonparasitic
relatives to trypanosomatids, recently became available. Robust phylogenetic
reconstructions across Euglenozoa are now possible and place the results of
parasite-focused studies into an evolutionary context. Here we discuss recent
advances in identifying the factors shaping the evolution of Euglenozoa, focusing
on ancestral features generally considered parasite-specific. Remarkably, most of
these predate the transition(s) to parasitism, suggesting that the presence of certain
preconditions makes a significant lifestyle change more likely.
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curs in free-living relatives of
kinetoplastids.
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Origins of Parasitism
Parasitism has emerged on many occasions during eukaryotic evolution. We have clear appreci-
ations of the important cellular features of parasitic organisms due, in part, to the considerable
attention they receive as disease agents. However, detailed information for both parasitic and
free-living sister lineages is essential to distinguish genuine adaptations to parasitism from other
specializations that are common across a lineage and represents a significant knowledge gap
for many parasitic groups.

What drives the switch from a free-living to a parasitic lifestyle? A classic view holds that easy
access to host nutrients per se is sufficient for metabolic streamlining, thereby locking previously
free-living or symbiotic taxa into parasitism. But, are specific preconditions required [1], which are
subsequently augmented and thereby ‘seal the deal’? The era of inexpensive genome and
transcriptome sequencing provides a platform to comprehensively address many long-standing
and critical questions concerning the nature of drivers behind parasitism.

The phylum Euglenozoa (see Glossary) provides a suitable case study for comparative
analysis. Euglenozoa encompasses a photosynthetic clade, multiple heterotrophic clades,
independent examples of parasitism and mutualism, as well as a well studied exclusively
parasitic clade of trypanosomatids (Figure 1A). Trypanosomatids are, and ancestrally were,
parasites of invertebrates, but dixenous parasitism has evolved multiple times, further
obscuring what drives the transition to obligate parasitism. Belonging to the class
Kinetoplastea, so named because of an extraordinarily large mass of mitochondrial DNA
hereafter called kinetoplast DNA (kDNA), the osmotrophic trypanosomatids have likely
evolved from a free-living ancestor with a phagotrophic mode of nutrition as suggested by
the presence of a cytostome–cytopharynx complex in free-living kinetoplastids and its
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Glossary
Cytostome–cytopharynx complex:
an oral apparatus of the cell, consisting
of a deep invagination of the plasma
membrane (‘cytopharynx’) and its
opening on the cell surface
(‘cytostome’).
Euglenozoa: a group of unicellular
eukaryotes (protists) unifying
Kinetoplastea, Diplonemea, Euglenida,
and Symbiontida. Best known
kinetoplastids are Leishmania and
Trypanosoma, serious parasites of
humans. Diplonemids are diverse and
abundant marine planktonic flagellates.
Euglenids incorporate both
nonphotosynthetic (Rhabdomonas) and
photosynthetic species with the
secondary plastids of green algal origin
(Euglena). Symbiontids are rare protists
covered with epibiotic bacteria.
Extrusomes: membrane-bound
extrusive organelles, which are
discharged from cells under stimuli,
serving a variety of functions.
Kinetochore: a complex machinery
driving chromosome segregation during
cell division by linking chromosomes/
chromatids to spindle microtubules built
of β-tubulin.
Kinetoplast DNA (kDNA): a highly
complex mitochondrial DNA of
Kinetoplastea, composed of relaxed or
supercoiled DNA circles, either
catenated into a single network, or
noncatenated, or a combination of both
arrangements.
Lacunae: hollow cytoplasmic spaces
typically associated with the
cytopharynx in Euglenozoa.
Nuclear pore complex (NPC): a large
multiprotein complex spanning the
nuclear envelope and governing
transport of macromolecules between
the nucleus and the cytoplasm.
Opisthokonts (Opisthokonta): a
eukaryotic supergroup incorporating
animals, fungi, and their unicellular
relatives.
RNA editing: post-transcriptional
changes in an RNA sequence, leading to
differences from the DNA template.
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Figure 1. Schematic Morphologies of a Trypanosomatid, Trypanosoma brucei (A), a Bodonid, Bodo saltans
(B), a Euglenid, Euglena gracilis (C), and a Diplonemid, Diplonema japonicum (D). Shared features are shown
using the same color and/or broken lines; examples of features specific for individual clades are: the disk-shaped
kinetoplast DNA for trypanosomatids; the bulky pro-kinetoplast DNA of bodonids; the green plastids of euglenids; and the
prominent cytostome for diplonemids. Abbreviations: ch, chloroplast; cpx, cytopharynx; cyt, cytostome; e, eyespot; f,
flagellum; fp, flagellar pocket; fv, food vacuole; G, Golgi apparatus; gly, glycosome; k, kinetoplast; mt, mitochondrion; mtb,
microtubules; n, nucleus; ph, photoreceptor; px, peroxisome.
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retention in some trypanosomatids (Figure 1B) [2,3]. Within kinetoplastids outside the
Trypanosomatidae family (Parabodonida and Neobodonida, Prokinetoplastida), abundant in
both freshwater and marine environments, multiple independent occurrences of parasitism
have been documented [4]. Two other taxonomically diverse, broadly distributed lineages
within Euglenozoa are the predominantly freshwater euglenids (Figure 1C) and almost exclu-
sively marine diplonemids (Figure 1D), which are both generally considered to be free-living
[4–8]. Symbiontids, euglenozoan protists covered with epibiotic bacteria, are understudied,
and whole-genome/transcriptome sequencing data are lacking for this group. Therefore,
we do not consider them here [9].
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Comparative analysis of trypanosomatid nuclear genomes against closely related free-livingBodo
saltans indicated that a switch in the mode of nutrient gain, from phagotrophy to osmotrophy,
rather than the loss of specific metabolic pathways, marked the transition to parasitism [10,11].
In some instances, cell surface innovations that influence the interactions of trypanosomatids
with their hosts were inherited from a common ancestor with B. saltans. Genome analyses of
monoxenous insect trypanosomatids, for example, Leptomonas and Paratrypanosoma, have
reinforced the view that, with a few exceptions, wide-scale losses of metabolic pathways did
not accompany the wider radiation of parasitism [12,13]. However, only recently has a thorough
comparison between parasites and their free-living relatives become possible due to the avail-
ability of genomes and transcriptomes for representatives from each of these species-rich and
ecologically significant groups [14]. This allows us to identify on an evolutionary scale which fea-
tures can be considered early preconditions for parasitism and carried over during the transition,
versus true parasitism-associated innovations.

Finally, comparisons between parasitic euglenozoans and free-living relatives can identify
constraints associated with ubiquitous and highly conserved eukaryotic machineries. Indeed,
for many examples, only one or two core subunits are identifiable, suggesting significant diversi-
fication of even apparent core functions. In total, we have analyzed the distribution of almost
30 features/traits across the Euglenozoa (Figure 2; see also Box S1 in the supplemental informa-
tion online). The majority of these features fall into the following categories: (i) traits which were or
still are considered lineage-specific within Euglenozoa, including but not restricted to presumably
parasite-specific ones (e.g., kDNA network, cell-surface proteins, glycosomes, fatty acid biosyn-
thesis using a set of elongases); (ii) traits with curious evolutionary history in Euglenozoa and/or
other eukaryotes (e.g., heme biosynthesis enzymes, pentafunctional AROM protein, family A
DNA polymerases); and (iii) protein complexes known to be divergent in trypanosomatids
compared with opisthokonts (e.g., kinetochore, histones). The evolution of most metabolic
and other features discussed herein was studied in parasitic trypanosomatids and their closest
outgroup species with a sequenced genome, a eubodonid B. saltans [1,10,11,15]. The studies
of other traits occasionally included diplonemids and/or euglenids [e.g., base J [16],RNA editing
[17], heme biosynthesis [18], reactive oxygen species (ROS)-detoxifying systems [19], the
presence of glycosomes [20], nonconventional introns [21], surface proteins [22]]. In this review,
we summarize the insights brought by the recent analyses of diplonemid and euglenid genomes
and transcriptomes [14,23] and expand the analyses of several traits (e.g., subtilisins, peptidases,
histones, 1,3-β-glucan biosynthesis, amastins and their domain composition) using these newly
available data. The emerging pattern of gains, losses, and reacquisitions [e.g., via horizontal gene
transfer (HGT)] is complex, and one can anticipate that future dissection of more traits will add
further complexity to this picture.

The Euglenozoan Common Ancestor: Lessons from Free-Living Relatives of
Parasitic Trypanosomatids
Nuclear Genome Organization
Striking features of trypanosomatid nuclear genomes and gene expression include the organiza-
tion of protein-coding genes into long polycistronic transcription units (PTUs), an apparent lack of
transcription initiation regulation, deployment of ‘ribosomal’ RNA polymerase I to transcribe
specialized protein-coding genes in African trypanosomes, as well as exploitation of subtelomeres
for the isolation of key virulence genes [24,25]. From recent data, we find that the euglenozoan
common ancestor (EUCA) likely possessed a large repetitive genome containing both conventional
and nonconventional cis-spliced introns [14]. Genome streamlining and loss of most cis-spliced
introns thus happened in the kinetoplastid common ancestor, although more genomes of free-
living kinetoplastids need to be analyzed to confirm this (Figure 2). Protein-coding genes in
102 Trends in Parasitology, February 2021, Vol. 37, No. 2
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Figure 2. The Distribution of Various Features of Kinetoplastids, Diplonemids, and Euglenids and Their Putative State in the Common Ancestor of
Euglenozoa. (A) Presence and absence are marked with ‘+’ and ‘–’ signs, respectively. Jigsaw puzzle icon indicates presence in only a subset of species within a
group. Question marks indicate absence of data. Abbreviations: AOX, alternative oxidase; EUCA, euglenozoan common ancestor; FAS, fatty acid synthase; kDNA,
kinetoplast DNA; mt, mitochondrial; RNAi, RNA interference; SL, splice leader RNA; VSGs, variant surface glycoproteins. aThe presence of cis-spliced introns was
confirmed for several trypanosomatid genomes and is confined to very few pre-mRNAs, including poly(A) polymerase and RNA helicase. bPro-kDNA of Bodo saltans is
composed of individual minicircles, with only a few very small catenanes. cThe analysis of RNA editing in diplonemids revealed insertions, but not deletions. dWe could
not identify catalase among Trypanoplasma borreli transcripts, but its activity was demonstrated before by Opperdoes and colleagues [109]. eThe last three enzymes
of the pathway are encoded in the genomes of Leishmaniinae, while Phytomonas spp. have only ferrochelatase; Perkinsela possesses a near-complete set of heme path-

(Figure legend continued at the bottom of the next page.)
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EUCAwere also organized into PTUs of seemingly functionally unrelated genes, and the respective
precursor mRNAs were subject to spliced leader RNA trans-splicing. The situation is different from
other Discoba, a protist group incorporating, in addition to Euglenozoa, lineages such as
Heterolobosea, Jakobida, and Tsukubamonas [26]. The genome of EUCA likely contained base
J (glucosylated hydroxymethyluracil), which is differentially localized within the genomes of all
three main euglenozoan clades [16] and participates in RNA polymerase II transcription termination
in trypanosomatids [27]. Some euglenozoans are capable of post-transcriptional control of gene
expression via RNA interference, which was almost certainly present in EUCA and differentially
lost within specific lineages [28].

Organellar Genomes and Gene Expression
Despite encoding only a handful of genes, mitochondrial genomes and transcriptomes are
notorious for evolving extreme sizes, topologies, editing, and other RNA processing events
[29]. Still, euglenozoans stand out with euglenids harboring a small complement of linear DNA
molecules in their mitochondria, while diplonemids evolved the largest mitochondrial genomes
known so far in terms of overall DNA content. These genomes are composed of supercoiled
noncatenated circles (Figure 2) [30]. In kinetoplastids, the amount of kDNA present is invariably
expanded relative to EUCA, with a milestone achieved in Perkinsela, where over 90% of total
cellular DNA is mitochondrial [31]. In trypanosomatids, the kDNA is composed of relaxed circles
catenated into a single network (Figure 2) [32]. The mitochondrial genes of diplonemids are
scrambled and transcripts require trans-splicing [17], while in kinetoplastids the genes are intact,
but encrypted, with extensive RNA editing by uridine insertions and deletions required to produce
translatable transcripts [33]. Unexpectedly, the post-transcriptional modification mechanism of
kinetoplastids evolved solely in that lineage, while diplonemid mitochondrial transcripts are
subject to two types of RNA editing: (i) uridine and adenosine appendage, and (ii) nucleotide
substitution (cytidine-to-uridine, adenosine-to-inosine, and guanosine-to-adenosine) [17]. While
uridine deletion editing observed in kinetoplastids was not found in diplonemids, uridine addition,
carried out in a ‘cut-add-reseal’mode in kinetoplastids, is performed by appending uridines to the
3′ ends of certain transcript modules prior to trans-splicing in diplonemids [17]. By contrast,
euglenids lack obvious traces of editing machinery and transcript processing [34]. Hence, the
baroquely complex RNA editing likely emerged in the kinetoplastid common ancestor, and
other types of editing arose independently in diplonemids.

Replication and maintenance of kDNA is highly complex when compared with mitochondrial
genomes of other eukaryotes. As a consequence, numerous dedicated enzymes, including an
expanded family of A DNA polymerases (A–D) are required [35]. The EUCA apparently possessed
only a single bacterial-related DNA polymerase A, the additional B and D isoforms arose in the
common ancestor of kinetoplastids (Figure 2A), and the C isoform in the common ancestor of
eubodonids and trypanosomatids [36]. Most mitochondrial proteins, including those involved in
kDNA replication, are encoded by the nuclear genome and imported into the organelle via mem-
brane protein translocation pores [23,37]. The genes encoding subunits of the translocase of
way enzymes. fHomologs were also identified in Naegleria and several other eukaryotic lineages and, thus, its absence from euglenids and Perkinsela are likely secondary
losses. gWe identified two low-confidence hits to mucin-like proteins (KAF0974799 and KAF0976983) in Naegleria fowleri. The features’ presence/absence for Discoba
outside Euglenozoa (an outgroup) is based on data from the literature. The presence of a mitochondrial family A polymerase-like sequence in Discoba is based on data
for Andalucia godoyi [110]. (B) Time-calibrated tree of Euglenozoa inferred on the alignment of 43 conserved proteins using BEAST2 [111] under relaxed clock and cali-
brated Yule model as the tree prior (see Box S1 in the supplemental information online for details). Naegleria gruberi serves as an outgroup. Nodes are at mean divergence
times. Bars and numbers at the nodes represent 95% highest posterior density interval. Ages on the X axis are in million years ago (Mya). Major events in the evolution of the
features from panel (A) are marked with the respective numbers in rounded rectangles. Most species-specific gains/losses are omitted for simplicity. The arrow and the star
correspond to two calibration points: ~120 Mya – Paleoleishmania fossil record [112]; ~450 Mya – fossil record of a euglenidMoyeria [113]. All nodes have posterior prob-
ability of 1. Names of parasitic/endosymbiotic species are underlined.
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inner membrane (TIM) also demonstrate differential evolutionary patterns in Euglenozoa, with
TIM17 and TIM23 complexes having undergone independent duplications in both euglenids
and diplonemids, while being absent from all known kinetoplastids (Box 1).

Which Traits in Trypanosomatids Represent Parasite-Specific Features?
Increasing evidence indicates that parasites are comparable with their free-living relatives in
complexity and metabolic capabilities, but additionally possess elaborate repertoires of virulence-
related genes [10,38]. Earlier work involving B. saltans, the closest known free-living relative of
Box 1. Mitochondrial Membrane Protein Translocation Pores

The majority of mitochondrial proteins must be imported across the double membranes via dedicated translocation pore-
based complexes. For protein transport to the intermembrane space, the EUCA is thought to have possessed an atypical
translocase of the outer membrane pore (ATOM40) (Figure IA). Two import channels, formed by three integral proteins of
the same family, were likely present on the inner membrane (IM), mediating transport of proteins into either the matrix or IM
(Figure IA). Translocase of inner membrane (TIM) 22 traditionally inserts proteins lacking presequences into the IM, while
the channel formed by TIM17 and TIM23 translocates presequence-containing proteins, the majority of which are matrix
bound. ATOM40 is seemingly not present in the kinetoplastidsAzumiobodo hoyashimi and Perkinsela sp. (Figure IB), nor is
any homolog of the TOM40 import channel, which represents an intriguing absence since an outer membrane protein
import pore appears essential in all surveyed mitochondriate lineages. TIM17 and TIM23 have been lost from T. brucei,
with a homolog to TIM22 being utilized for both matrix import and IM insertion of proteins [37,100]. TIM17 and TIM23
are equally absent from all other kinetoplastids, suggesting that this reduction and repurposing occurred in their common
ancestor (Figure IA). Such a reduction would unsurprisingly facilitate a streamlining of the import apparatus, which likely
became irreversible through the transition to parasitism. Interestingly however, the surveyed mitochondrial proteome
of T. brucei shows an unreduced complexity with ~1200 verified proteins, the majority of which (956) are also seen in
anaerobic bloodstream form cells [101], suggesting that the quantity of imported proteins has not noticeably diminished,
as seen in the reduced mitochondria of other parasites [102,103]. The detection of over 1700 proteins in the mitochon-
drion of E. gracilis suggests that other euglenozoan lineages exhibit a complexity unexpected in unicellular organisms
[23]. Euglenids and diplonemids additionally retain all three IM integral proteins, with duplications seen in both TIM17
and TIM23 (Figure IA), perhaps responding to increased import capacity for a greater variety of proteins.

TrendsTrends inin ParasitologyParasitology

Figure I. Mitochondrial Import Channels in Euglenozoa. (A) Schematic diagram demonstrating mitochondrial
evolution of protein translocation from the euglenozoan common ancestor (EUCA), residing on either the outer
mitochondrial membrane (OMM) or inner mitochondrial membrane (IMM). Lighter shaded pores represent proteins not
seen in all species of a particular clade; black arrows show interaction of proteins within the same import complex.
(B) Import channel within euglenozoans: ‘blue +’ = presence; ‘–’ = absence; ‘yellow +’ = duplication. Abbreviation:
ATOM40, atypical translocase of the outer membrane pore 40.
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parasitic trypanosomatids, suggested that losses of metabolic capacity, such as amino acid,
purine, folate, and ubiquinone biosynthesis pathways, previously assumed as parasitism-
associated reductions, predate the emergence of parasitism in trypanosomatids [1,10,11].
Extensive genomic and transcriptomic datasets from a variety of euglenozoans now support
this model [14]. Indeed, analyses of free-living and parasitic kinetoplastids showed that they are
auxotrophic for several amino acids, in contrast to diplonemids and euglenids [14]. Furthermore,
the EUCA likely possessed a penta-functional AROM protein catalyzing several steps of the
shikimate pathway, previously identified in only a few other eukaryotes (Figure 2). For fatty acid bio-
synthesis, an unusual rendition, involving a set of elongases, is not restricted to trypanosomatids
[15] but is likely also functional in free-living bodonids [14], albeit the EUCA likely possessed a con-
ventional fatty acid synthase I, present in diplonemids and euglenids (Figure 2). The cytochrome-
independent, cyanide-insensitive alternative oxidases described in trypanosomatids [39] and
other eukaryotes, such as fungi and animals [40,41] are not an exclusive feature of euglenozoan
parasites as they are identified in diplonemids and euglenids and were most likely present in the
EUCA and other early eukaryotes (Figure 2).

By contrast, the unusual compartmentalization of the first six or seven enzymes of glycolysis and
other carbohydrate metabolic enzymes into peroxisomes, remodeling this organelle into
glycosomes [42], occurred in the common ancestor of diplonemids and kinetoplastids [20,43].
Euglena gracilis lacks peroxisome-targeted isoforms of glycolytic enzymes [44], and of
~50 high-confidence glycosomal proteins of Trypanosoma brucei [45], none have recognizable
homologs in E. gracilis, suggesting that the evolution of glycosomes in Euglenozoa goes beyond
carbohydrate metabolism [22,44]. The only known plastid acquisition event in Euglenozoa took
place in the ancestor of Euglenophyceae, which possess secondary plastids of Pyramimonas-
like green algal origin [46].

Although the loss of amino acid, nucleotide, vitamin, heme biosynthesis, and many other
pathways is not directly connected with parasitism, some of the losses clearly are a consequence
of this change. For example, the EUCA was likely endowed with the ability to synthesize
paramylon (β-1,3-glucan), a structural and storage polysaccharide in a variety of organisms
[47,48]. In Euglenozoa the loss of the paramylon synthetic capacity correlates with the
parasitic/endosymbiotic lifestyle (Box 2).

Thus, metabolic reduction in Kinetoplastea was a multistep process, likely unrelated to the
singular origin of parasitism in trypanosomatids [14]. In some instances, gene family expansions
happened within trypanosomatids, notably cell-surface permeases and transporters [10,49,50].
Only where adaptation to specific niches occurred were switches to parasitism/endosymbiosis
obviously accompanied by striking metabolic losses, illustrated by the plant-pathogen Phytomonas
and the amoeba endosymbiont Perkinsela [51–53].

Complex Evolutionary Patterns of Specific Metabolic Features in Euglenozoa
Heme Biosynthesis
Heme biosynthesis is a near universal essential part of metabolism but has a complex history in
kinetoplastids. Despite dispensing with so much of the biology that otherwise characterizes
kinetoplastids [18] the early-branching Perkinsela synthesizes heme [53] while the entire pathway
was lost in other kinetoplastids studied in this respect (Figure 2). It is assumed that the free-living
bodonids acquire heme from their bacterial prey, whereas the parasitic trypanosomatids obtain it
from their host [18]. However, the picture is further complicated by a reacquisition of the last three
steps, via HGT, by Leishmania and related flagellates, which possibly have access to
coproporphyrinogen III of the host. Another source of heme for some trypanosomatids is their
106 Trends in Parasitology, February 2021, Vol. 37, No. 2



Box 2. Parasitism and (1,3)-β-Glucan: ‘Hide and Use It or Lose It’

1,3-β-Glucan (also known as paramylon) is a widely distributed polysaccharide found in some bacteria, euglenozoans, the
SAR (Stramenopila, Alveolata, Rhizaria) supergroup, haptophytes, fungi, and plants, where it usually plays storage and
structural roles [47,48]. In addition, 1,3-β-glucan is an immunomodulator active in both vertebrates and invertebrates
[104], even in plants [105]. Given this role, it might be disadvantageous for parasites to synthesize 1,3-β-glucan, unless
it is shielded from the host immune system. While the EUCA likely possessed the ability to synthesize 1,3-β-glucan in a
reaction catalyzed by an enzyme belonging to family 48 of glycosyl transferases, this capacity was lost multiple times in
parasitic lineages (Figure I). Indeed, the same holds true for the genus Naegleria, where the free-living Naegleria gruberi
preserves the 1,3-β-glucan synthase, and the causative agent of amoebic meningoencephalitis, Naegleria fowleri, lost
it, while its loss in Perkinsela might rather be a consequence of massive genome reduction [53]. Interestingly, since
diplonemids synthesize 1,3-β-glucan in nutrient-poor conditions [47], we suggest that, similar to diatoms [106],
diplonemids use it for lowering cell buoyancy, leading to submersion in more nutrient-rich layers of the ocean. In contrast
to Euglenozoa, parasites from several eukaryotic lineages, where 1,3-β-glucan plays an important structural role, tend to
preserve its biosynthesis and hide it from the host’s immune system. For example, 1,3-β-glucan is found in the inner layer
of the oocyst wall of Toxoplasma but is lacking in its tissue stages [107]. Similarly, pathogenic filamentous fungi use α-1,3-
glucan to conceal 1,3-β-glucan in their cell wall [108]. With the growing number of available genome sequences, it would
be interesting to study the distribution of glucan synthase genes and its correlation with the lifestyle, evolution of glucan
synthase domain architecture, and possible functions of 1,3-β-glucan.

TrendsTrends inin ParasitologyParasitology

Figure I. Presence/Absence Pattern of Genes Encoding 1,3-β-Glucan Synthase in Euglenozoa and
Naegleria. The number of identified protein sequences and their domain composition is shown. The ability to
synthesize (1,3)-β-glucan in Euglenozoa, and its closest relatives with sequenced genomes, Naegleria spp., appears to
correlate with the lifestyle: free-living organisms possess it while pathogens and symbionts have lost it. Species names
of pathogenic and symbiotic organisms are underlined. Abbreviation: T, transcriptomic data.
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endosymbiont [54] . Finally, the enzyme of the last step of heme biosynthesis, ferrochelatase, was
repeatedly acquired via HGT, but its role remains uncertain [18].

ROS Detoxifying Systems
Aerobic metabolism is always connected to the production of dangerous ROS, which can oxidize
proteins, lipids, and nucleic acids [55,56]. With varying life cycles and environments across
Euglenozoa, it is likely that specific taxa have significantly different levels of ROS production, as
well as mechanisms for coping with them [57].

Evolution of ROS-detoxifying systems in Euglenozoa is complex and is shaped by a plethora of
factors [14,57–59]. The ROS protection system of Euglena relies on a combination of glutathione,
thioredoxin, and trypanothione NADPH-dependent thiol-redox systems but lacks a heme-
containing catalase, and likely resembles the ancestral state in the EUCA (Figure 2). Parasitic
trypanosomatids, dependent solely on the trypanothione-based system for ROS protection,
have lost both the glutathione and thioredoxin reductase-based systems [14]. Other
kinetoplastids show an intermediate state on the way to the minimized NADPH-dependent
Trends in Parasitology, February 2021, Vol. 37, No. 2 107
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thiol-redox systems of trypanosomatids, having lost glutathione but retained thioredoxin
reductase.

The distribution of catalase, a unique enzyme for direct ROS detoxification, is patchy and its
evolution is complex. Its absence from euglenids [60] could imply that it was not present in
the EUCA (Figure 2) and was acquired via HGT from a eukaryote by a common ancestor of
diplonemids and kinetoplastids. While retained by several diplonemids, the catalase gene
was replaced by an α-proteobacterial homolog in other diplonemids [57]. Moreover, catalase
was absent from the common ancestor of kinetoplastids, yet independently acquired at least
twice by trypanosomatids from different bacterial groups [57,59]. Taken together, this tes-
tifies to the importance of catalase in euglenozoan evolution and documents a tendency to
functionally substitute catalase with bacterial homologs, likely from those that they prey
upon.

Composition and Evolution of Selected Protein Complexes
Nuclear Pore Complex and Lamina
From the nucleus, we focus on the nuclear pore complex (NPC), the site of nucleocytoplasmic
transport, the nuclear lamina, the structural and spatial organizer, and the kinetochore, the
link between chromosomes and the mitotic spindle, since each has been the subject of recent
investigations in kinetoplastids [61,62].

The diplonemid lamina is at least partly conserved in kinetoplastids due to the presence of homo-
logs for themajor components NUP-1 andNUP-2, which, by contrast, aremissing from E. gracilis
[63]. The diplonemid NPC (Figure 3) demonstrates similarities with the E. gracilis state [22] as both
β-propeller proteins (Seh1 and ALADIN) are present and, importantly, the former is lost from
trypanosomes (Figure 3A,B). The gating NPC components of diplonemids more closely resemble
those in E. gracilis than in T. brucei (Figure 3C). However, this interpretation needs to be treated
with caution as precise homology for NPC proteins is extremely difficult to assign, even for closely
related species [64,65]. Most significant is the absence of the mRNA export factor DBP5 from
diplonemids and kinetoplastids, a key component of late steps of RNA processing [66], present
in E. gracilis. Hence, the NUP-1 lamina is a shared feature of diplonemids and kinetoplastids,
indicating its origin at the common ancestor of these two lineages, and additionally suggest-
ing that this configuration is neither parasitism-associated nor associated with the absence
of cis-splicing.

Kinetochore
The kinetochore, a complex of over 60 proteins, is organized in a modular fashion and is
well conserved across most eukaryotes [67]. For detailed information on the structure and
functions of kinetochores in kinetoplastids and other eukaryotes the reader is referred to the
excellent reviews on the topic [67,68]. The sole known example of wholesale kinetochore
replacement are kinetoplastids, where a simpler structure of ~30 proteins replaces the canon-
ical form [62,69]. In contrast to kinetoplastids, homologs of the centromeric histone H3 are
present in diplonemids and possibly involved in kinetochore assembly [14]. Little else is
currently known about the apparently enigmatic diplonemid kinetochores, with their composi-
tion and structure waiting to be elucidated. Intriguingly, the presence of a few kinetoplastid
kinetochore (KKT) genes, as well as specific regulatory proteins of kinase (KKT10, KKT19),
and phosphatase (KKIP7) families in diplonemids and euglenids suggests that parts of the
kinetoplastid system may have been represented more broadly amongst the discobid protists.
However, it remains unclear whether these proteins are components of diplonemid or euglenid
kinetochores.
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Figure 3. Nuclear Pore Complex
(NPC). (A) An architecture of the NPC
subunits in Euglenozoa, opisthokonts
(Homo sapiens and Saccharomyces
cerevisiae) and plants (Arabidopsis
thaliana). The presence of the
respective proteins in diplonemids is
marked with gray circles. (B) A
composition of the inner and outer
ring complexes, pore membrane ring,
and nuclear basket of the NPC in
diplonemids, Trypanosoma brucei,
and Euglena gracilis. Transparency of
segments is lowest for the best
hits. Subunit numbering at panel A
corresponds to the numbering at
panel B. (C) Phenylalanine–glycine
family of the NPC proteins in T. brucei,
E. gracilis and diplonemids, S. cerevisiae,
H. sapiens, and A. thaliana. The
presence of the respective homologs in
E. gracilis and diplonemids is indicated
with the ‘x’ sign. Diplonemid NPC
appears to be more similar to its
euglenid counterpart than to the
NPC of T. brucei. On the contrary,
the lamina of diplonemids resembles
more the lamina of T. brucei than
that of E. gracilis. Abbreviation: TM,
transmembrane domain.
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Histone Octamer and H1
Trypanosomatid histones, reviewed in [70,71], are amongst the most divergent, with histone H1
lacking even the histone fold domain. In contrast to canonical euglenid sequences, diplonemid
histone H1 also appears to be highly divergent since it could not be identified in our dataset,
even when employing sensitive bioinformatic searches. Moreover, diplonemid core histones
H2B and H4 are divergent from both their respective homologs in other euglenozoans, as well
as animals, fungi, and plants (Figures S1–S5 in the supplemental information online). Diplonemid
histones also demonstrate lineage-specific expansions, resulting in examples of considerably
sized paralog families, indicating novel chromatin-regulatory mechanisms.
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Insights into Evolution of Virulence-Related Genes
Cell-Surface Proteins
Across eukaryotes, surface composition is highly attuned towards supporting lifestyles, partici-
pating in immune evasion, cell invasion, migration, and environmental sensing, yet cell surfaces
exhibit considerable diversity, even between closely related taxa [72,73]. Amastins are a family
of surface glycoproteins that are present in all kinetoplastids (except Perkinsela) and, while having
poorly understood functions, are evolutionarily flexible [74]. Amastins encoded by a large gene
family in trypanosomatids typically contain four transmembrane domains and are expressed
mainly during the intracellular amastigote stage in Trypanosoma cruzi and Leishmania spp.
[74]. The presence of amastin domain-containing proteins of unknown function (all with
predicted transmembrane helices characteristic for trypanosomatid amastins) in euglenids and
diplonemids (Figure 2, Figure S6 in the supplemental information online) prompts us to suggest
their presence in the EUCA. Furthermore, the gp63 protease family (leishmanolysin), an important
trypanosomatid virulence factor playing multiple roles in both an insect vector and a vertebrate
host [75], is expanded in diplonemids but was not identified in euglenids and Perkinsela
(Figure S7 in the supplemental information online). Given its paneukaryotic presence [76], gp63
was likely present in the EUCA and secondarily lost from both euglenids and the minimized
Perkinsela. In addition to amastins and gp63 proteases, trypanosomes incorporate variant
surface glycoproteins (VSGs), mucins, trans-sialidases and proteins encoded by expression
site-associated genes to their membrane [72,77]. Of major surface proteins described in trypano-
somes, diplonemids carry only ESP23, which is a conserved multipass protein of unknown func-
tion [78]. We failed to detect ancestral homologs of mucins, trans-sialidases, and the VSG families
in diplonemids and euglenids, which rose to prominence in the African trypanosomes [79]
(Figure 2A).

Subtilisin and Metallocarboxypeptidases
Secreted peptidases are important contributors to kinetoplastid parasitism. The broad families of
subtilisins and metallocarboxypeptidases are involved in a variety of functions, including proteol-
ysis and enzyme activation. Subtilisins mediate survival of Leishmania in macrophages with a
molecular function as a maturase for tryparedoxin peroxidase [80]. Some diplonemids massively
expanded their subtilisins, euglenids show large variation in total counts between species, while
kinetoplastids have reduced numbers (Figure 4). It is striking that this protein family, which
contributes towards parasitism, is counterintuitively subject to reduction, particularly in parasitic
species. The subcellular distribution of subtilisins is predicted as primarily in the secretory path-
way, tethered to the cell membrane or cytoplasm, though a number are additionally predicted
in organellar compartments. Kinetoplastids have a specific reduction in these latter subtilisins,
while those associated with parasitism appear targeted to the surface membrane (Figure 4).

The M14 metallocarboxypeptidases are a smaller family. On average, diplonemids have the
largest number of paralogs but prokinetoplastids show the highest total (Figure 4). Varied
numbers of carboxypeptidases are detected in both euglenids and free-living kinetoplastids,
followed by a noticeable reduction within their parasitic kin (Figure 4). Parasitism is also accompa-
nied by targeting changes, with secreted carboxypeptidases being almost entirely absent, and
favoring cytoplasmic and nuclear paralogs (Figure 4). Since some parasites, such as Plasmodium,
make use of the host’s processing enzymes [81], it is plausible that trypanosomatids have
developed a similar dependency that accompanies this loss in their genomes.

Of particular interest is the M32 metallocarboxypeptidase family, scarcely seen in eukaryotes,
but noticeably reported in trypanosomes and considered attractive drug targets [82]. Several
parasitic lineages show significant expansions of this family, localized primarily to the cytoplasm
110 Trends in Parasitology, February 2021, Vol. 37, No. 2



TrendsTrends inin ParasitologyParasitology

Figure 4. Comparative Distribution of Various Peptidases within Euglenozoa. Distribution of subtilisins and
M14 and M32 metallocarboxypeptidases among selected species, with predicted subcellular localization indicated (blue
cytoplasm; brown: endoplasmic reticulum; green: plastid; light blue: lysosome/vacuole; orange: mitochondrion; pink
peroxisome; purple: cell membrane; red: secreted; yellow: nucleus; gray: other). Subtilisins and metallocarboxypeptidases
are virulence factors described in trypanosomatids. Counterintuitively, the family of subtilisins is reduced in the
kinetoplastid parasites compared with the free-living diplonemids, euglenids, and prokinetoplastids. A simila
trend is observed for M14 metallocarboxypeptidases, while the M32 family is expanded in several parasitic
lineages. The in silico-determined distribution of subtilisins localized them primarily in the secretory pathway
tethered to the cell membrane or cytoplasm. The M32 peptidases appear localized primarily to the cytoplasm o
mitochondrion.
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and mitochondrion, which contrasts with their minimal counts or even absence in the free-living
representatives (Figure 4).

Cell Form and Differentiation
Striking features of trypanosomatid cell biology are the cellular morphological and biochemical
alterations interpreted as a facilitating adaptation to the specific host niches, attachment to
surfaces [3,83], or involved in meiosis and recombination [84]. Trypanosomatid cell forms are his-
torically described by whether the kDNA and associated flagellar basal bodies lie anterior or pos-
terior to the nucleus and the extent to which the flagellum is attached to the cell body beyond the
flagellar pocket. Thus, pivotal to changes in cell form are flagella and flagellum attachment-zone
lengths, ranging from the short sensory flagellum built by intracellular amastigotes [85] to the
long attached flagella of mesocyclic and long epimastigote stages of T. brucei found within tsetse
flies [86]. By contrast, we tend to consider the phagotrophic bodonids from the perspective of
less dynamic cell morphologies: at one extreme the endosymbiont Perkinsela has dispensed
with a flagellum-associated cytoskeleton, making morphological transitions difficult [53], but
even the demonstration of cyst-like morphologies are limited to a handful of reports [87,88] and
these forms appear not to be true cysts. This leaves an open question of whether encystment
is a trait generally lacking from euglenozoans.

Yet, do the complex patterns of life cycle differentiation and cytoskeletal rearrangements, which
are seen in trypanosomatids, represent traits derived following, or even facilitating, the transition
to obligate parasitism or perhaps complex dixenous parasitism? Recent acquisition into culture
and resultant cell biology characterizations of novel diplonemid taxa [89–91] suggest that the
answer to this question is probably 'no' since patterns of cellular differentiation and dynamic
changes in cell morphology are evident as these diplonemids age in batch culture or are subject
to starvation. Thus, in response to environmental cues, some diplonemids adopt sessile confor-
mations, attaching to surfaces via gelatinous cell coats, remodeling flagellum ultrastructure with
concomitant changes to swimming behavior, or assembling lacunae and extrusomes in
response to extrinsic factors. In other diplonemids, extrusomes are always evident [89].
Collectively, however, the changes in form that have been documented for several diplonemid
taxa provide a morphological diversity that begins to approach that seen in trypanosomatids.
Observations that some diplonemids build a paraflagellar rod, a key synapomorphy for
Euglenozoa, only at some points in their life cycles, and of starvation-triggered attachment of
diplonemids to surfaces, suggest that the roots of trypanosomatid attachment to epithelial
surfaces in invertebrate vectors lie deep within euglenozoan evolution.

Returning to the context of trypanosomatid life cycles, there are examples of cytoskeletal
structures, such as the cytostome–cytopharynx complex, retained in only some trypanosomatid
species or assembled in only some life stages [3,92]. However, regarding the different morphol-
ogies of trypomastigote, epimastigote, and promastigote cell shapes, providing the flagellum–cell
surface attachment remains intact, then changes in the expression of only a single cytoskeletal
protein can be sufficient to drive changes in cell morphology [93–95]. Moreover, changes in the
expression of a single RNA-binding protein – a principal mechanism through which gene expres-
sion is regulated in trypanosomatids [96] – can be sufficient to trigger the completion of complex
differentiation programs in their entireties [97]. This suggests that, in trypanosomatids, regulatory
hierarchies underpinning complex changes in the expression levels of many proteins may be
triggered by relatively simple ‘master switches’. This attests to a longstanding view that regulatory
networks controlling gene expression in parasites are generally streamlined compared with those
in the free-living taxa. With the exception of some surface coat proteins in the African trypano-
somes, trypanosomatids, and seemingly also bodonids, lack gene regulation at the level of
112 Trends in Parasitology, February 2021, Vol. 37, No. 2



Outstanding Questions
What were the drivers for genome
streamlining and the loss of various
metabolic pathways in supposedly
free-living ancestral kinetoplastids?
Could the ancestor of kinetoplastids
have been a symbiont? Was it a spe-
cialist in a narrow-niche environment,
getting all the required nutrients from
its prey? What factors facilitated multi-
ple switches to parasitism/symbiosis
in kinetoplastids?

What roles do the homologs of
proteins connected to virulence in the
parasitic trypanosomatids play in the
free-living euglenozoans?

What evolutionary forces led to the
development of bizarre mitochondrial
genome architectures and modes of
RNA editing in diplonemids and
kinetoplastids?

What is the composition, structure, and
origin of the diplonemid kinetochore?

What are the mechanisms controlling
gene expression and life cycle
progression in the free-living
euglenozoans?
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transcription. It will, thus, be fascinating to determine the extent to which regulatory cascades
controlling wide-scale changes in gene expression within euglenozoans differ in complexity
between the gene-plentiful free-living taxa and the parasites which typically encode fewer
genes within their nuclear genomes.

Concluding Remarks
Euglenozoa, unifying parasitic trypanosomatids with presumably free-living heterotrophic
diplonemids and photosynthetic or heterotrophic euglenids, represent a tractable group for
understanding lifestyle evolution. Having in hand a robust phylogenetic framework as well as
sequence data from all these groups, we can readily study the evolution of underlying features
making the switches between lifestyles possible. We can also distinguish parasite-specific
features from the ancestral euglenozoan traits present already in the free-living predecessors of
the contemporary parasites.

Thus, polycistronic transcription, ubiquitous trans-splicing, base J, certain surface molecules
(amastin and gp63 protease), subtilisins and peptidases, a trypanothione-basedROS-detoxifying
system, the nutrient-triggered attachment to surfaces, and alternative energy-generating
mechanisms are examples of features likely already present in the EUCA, which wasmetabolically
versatile, similar to diplonemids. The common ancestor of kinetoplastids apparently sustained
metabolic losses and possibly a loss of most introns, while genome streamlining, and more
drastic metabolic losses occurred subsequently in the obligatory parasitic trypanosomatids.
Although for other prominent features, such as expanded kDNA with bizarre architecture, com-
plex RNA editing, and divergent mRNA processing mechanisms, no clear evolutionary pattern
can currently be derived, the comparative analysis is informative. It is evident that the emergence
of some features so far associated with parasitism in trypanosomatids actually predated its
emergence. The homologs of certain trypanosomatid virulence-related genes are not only
present, but sometimes even expanded in diplonemids and euglenids. While the role of respec-
tive proteins remains unknown in the free-living euglenozoans, they have been repurposed in the
obligatory parasitic trypanosomatids to facilitate host–pathogen interactions. We propose that
the emergence of parasitism in euglenozoans may have been facilitated by the capacity of gen-
eralists to ‘spin-out’ parasitic specialists with great efficiency. While there are a few ancestral
euglenozoan gene families, which have undergone expansion [1,10] as the switch to parasitism
happened in trypanosomatids (e.g., amastins, gp63, subtilisins and peptidases, cell-surface
permeases and transporters), it is challenging to delineate those features the emergence of
which coincides with the origin of parasitism in this family. Some traits, however, were lost pre-
sumably as a consequence of the parasitic lifestyle (e.g., 1,3-β-glucan biosynthesis in parasitic
Euglenozoa and glutathione-based ROS-protection system in trypanosomatids). Widely variable
lifestyles of kinetoplastids and the scarcity of information on free-living representatives of the clade
make assumptions about the lifestyle of their common ancestor highly speculative. We suggest
that the common ancestor of Kinetoplastea was a free-living organism obtaining all necessary
nutrients from its prey [possibly bacteria and/or other protists, given its existence ~1000 million
years ago (Mya) by our estimates], which enabled metabolic losses. Common ancestors of
currently existing parasitic groups could form accidental, most likely transient, symbiotic or
commensal relationships with an unknown host or different hosts. Such interactions could
have been facilitated by the ancestrally present ability of nutrient-triggered attachment to cell
surfaces, as well as by ancestral subtilisins, peptidases, cell-surface proteins which, in certain
cases, have evolved into host–parasite relationships.

A number of questions remain unanswered (see Outstanding Questions). The evolutionary forces
shaping euglenozoan genomes and causality of events triggering multiple switches to parasitism,
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as well as the development of a number of bizarre features of the euglenozoanmitochondrion, are
not clear. The concurrent presence of many highly derived traits, such as kinetochore, histones,
and the prereplication complex in kinetoplastids and diplonemids, implies that the high level of
divergence of these (otherwise conserved) systems is not directly related to a relaxed selective
pressure associated with parasitism. Among trypanosomatids, unconstrained evolution of at
least one essential cytoskeletal protein, such that homologs are recognizable only on the basis
of gene synteny and functional characterization, rather than on sequence conservation [98],
raises a prospect that a notable proportion of seemingly unrelated hypothetical genes in diverse
euglenozoans may turn out to share a common ancestry. The availability of high-quality genomic
and transcriptomic data for a representative set of diplonemids, as well as experimental data from
genetically tractable Diplonema papillatum [20,99], will be crucial for answering several important
evolutionary questions connected to the origin of parasitism.
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