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ABSTRACT
The core architecture of the eukaryotic cell was established well over one billion years ago,
and is largely retained in all extant lineages. However, eukaryotic cells also possess lineage-
specific features, frequently keyed to specific functional requirements. One quintessential core
eukaryotic structure is the nuclear pore complex (NPC), responsible for regulating exchange of
macromolecules between the nucleus and cytoplasm as well as acting as a nuclear
organizational hub. NPC architecture has been best documented in one eukaryotic
supergroup, the Opisthokonts (e.g. Saccharomyces cerevisiae and Homo sapiens), which
although compositionally similar, have significant variations in certain NPC subcomplex
structures. The variation of NPC structure across other taxa in the eukaryotic kingdom
however, remains poorly understood. We explored trypanosomes, highly divergent organisms,
and mapped and assigned their NPC proteins to specific substructures to reveal their NPC
architecture. We showed that the NPC central structural scaffold is conserved, likely across all
eukaryotes, but more peripheral elements can exhibit very significant lineage-specific losses,
duplications or other alterations in their components. Amazingly, trypanosomes lack the major
components of the mRNA export platform that are asymmetrically localized within yeast and
vertebrate NPCs. Concomitant with this, the trypanosome NPC is ALMOST completely
symmetric with the nuclear basket being the only major source of asymmetry. We suggest
these features point toward a stepwise evolution of the NPC in which a coating scaffold first
stabilized the pore after which selective gating emerged and expanded, leading to the
addition of peripheral remodeling machineries on the nucleoplasmic and cytoplasmic sides of
the pore.
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In the beginning……

The origin of the eukaryotic cell (eukaryogenesis) is a
major evolutionary transition in the history of life,1

accompanied by the emergence of extensive intracellu-
lar compartmentalization. The most pronounced
compartment is the nucleus, surrounded by a double-
membrane nuclear envelope (NE) that is contiguous
with the endoplasmic reticulum. The most prominent
macromolecular assembly, present in all NEs, are
nuclear pore complexes (NPCs - 8-fold symmetric
cylindrical multiprotein structures (»50 MDa in
yeast) that mediate macromolecular exchange between
the nucleus and the cytoplasm (Fig. 1). Since the NPC
is uniquely and ubiquitously a eukaryotic feature, we

can facilitate a reconstruction of evolutionary history,
identify potential adaptive mechanisms, and look for
the imprints that the transition from the first to the
last eukaryote common ancestor (FECA to LECA) left
at the structural and molecular levels through a
detailed study and comparison of the NPC’s compo-
nents from key organisms across the eukaryotic
lineage.

Ultrastructural studies hint at a high level of mor-
phological NPC conservation across eukarya. How-
ever, morphological similarity, especially at
comparatively low resolution, cannot define molecular
structure or function that requires a significantly
greater level of dissection. Until recently, detailed
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compositional, structural and functional information
of the NPC was only available for Saccharomyces cere-
visiae (Sc) and Homo sapiens (Hs), both members of
the Opisthokont supergroup, and thus relatively,
closely related.2-4 In the last 7 years, NPC components
have been well cataloged in 2 further supergroups,
Excavata (Trypanosoma brucei (Tb)) by us,4,5 and
Archaeplastida (Arabidopsis thaliana (At)),6,7 result-
ing in remarkable initial insights into the structure,
evolution and species-specific adaptations of the NPC.

Copy and paste: the NPC’s scaffold arose through
ancient duplications of a progenitor coating
complex

NPCs are comprised of multiples of »30 different pro-
teins termed nucleoporins (Nups) that are classified into
3 major subtypes; pore membrane (Poms), core scaffold,
and phenylalanine-glycine (FG)-repeat containing Nups
(FG-Nups) (Fig. 1).3-11 Poms and the core scaffold form
themajor structural framework while FG-Nups establish
the permeability barrier of theNPC and facilitate nucleo-
cytoplasmic transport through interactions with soluble
transport factors (karyopherins), with directionality
dependent on a RanGTP/GDP gradient.12

There is extremely low sequence similarity between
excavate and opisthokont Nups.4 Despite this,

trypanosome Nups share a remarkable architectural
and domain organization with opisthokonts and
plants, highlighting that structural considerations
such as detailed fold arrangements are key to the func-
tion of these proteins (Table 1).4,5 The core scaffold of
the NPC comprises the inner and outer rings that are
composed almost exclusively of proteins comprised of
b-propellers, a-solenoids, or an N-terminal b-propel-
ler and C-terminal a-solenoid (b-a).13,14 These char-
acteristics are shared with major classes of membrane
interacting proteins, such as vesicle coat proteins
(COPI, COPII, clathrin and tethering complexes) and
intraflagellar complexes, suggestive of a common
ancestry between the endomembrane trafficking sys-
tem and the NPC, a theory known as the “protocoato-
mer hypothesis”.8,13,14 Moreover, the overall
architecture of the NPC’s core scaffold appears to con-
sist of multiple kinds of structural modules that never-
theless resemble each other, both in composition and
in arrangement of fold and domain types.8,15,16 This
supports the idea that the elaborate architecture of the
NPC arose through repeated duplication events from
a simple progenitor coating complex.8,17,18

Variations on a theme: using the same building
blocks to assemble different NPC structures

At the heart of the NPC there appears to be a remark-
ably conserved core subcomplex. This is the inner ring
complex, almost identical in protein composition and
arrangement between all eukaryotes studied, including
trypanosomes.5,7,8,16,19,20 This structure must already
have been present in LECA, with relatively few post-
LECA innovations in any organism. Surely, this forms
a keystone to hold the NPC together.

However, the modular scaffold architecture of the
NPC – a scaffold of similar building blocks – can open
a simple path to the evolutionary elaboration and diver-
sification of the NPC, through altering the number or
design of each building block. And indeed, there is a
compositional flexibility in the outer ring complex,
which revolves around the presence or absence of a sub-
set of proteins in different organisms (Table 1). Most
variable is the complement of b-propeller proteins, as
only Sec 13 is present in all characterized versions of
this complex. Sec 13 is also present in COPII com-
plexes, further underscoring the evolutionary relation-
ship between the NPC and coating complexes.13,14

Nonetheless, what appear to be minor species-specific

Figure 1. Schematic of opisthokont NPCs. A schematic of text-
book NPCs highlighting each distinct nuclear pore subcomplex.
The approximate location messenger ribonucleprotein (mRNP)
remodeling factors required for mRNA export out of the NPC is
also shown.
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Table 1. Protein folds and the components of the NPC in trypanosomes, plants and opisthokonts. (A) The NPC is principally comprised of
proteins with the fold types highlighted. a-solenoids are stacked pairs of a (a) helices, composed of anti parallel repeating a subunits
that in turn form a kind of “superhelix”,87 b-propeller proteins typically have between 4 to 8 blade-shaped b (b) sheets arranged in a
toroidal fashion,88 RRM is RNA recognition motif, TM is trans membrane domain, coiled coils are 2 or more a helices that wind around
each other to form larger helical bundles and FG-repeats are phenylalanine glycine repeats typically found in the intrinsically disordered
protein domains of Nups that interact with transport factors in the nucleus. (B) A catalog of trypanosome Nups compared with those in
other well-studied taxa. Orthologs of individual TbNups are based on interactome mapping and immunolocalization of NPC subcom-
plexes in the trypanosome NPC. Trypanosomes lack pore membrane Nups and cytoplasmic or nuclear biased Nups. Furthermore, several
trypanosome FG-Nups and the nuclear basket Nups are not orthologous to those in opisthokonts and plants. Trypanosome nuclear bas-
ket Nups are half the size of those in other eukaryotes studied to date and appear to have arisen independently through evolution.38,39

The RNA-recognition motif (RRM) containing TbNup65 has a trans-membrane (TM) domain instead of an amphipathic lipid-sensing
(ALPS) motif30,31 that is found in the equivalent opisthokont and plant orthologs, and maybe the way trypanosomes compensate for a
lack of pore membrane (POMs) Nups. TbNup158� lacks the catalytic residues required to undergo autoproteolysis that generates 2 indi-
vidual proteins such as yeast Nup145N/Nup145C and verterbrate Nup98/Nup964,5, and as such remains a single N-terminal FG-domain/
C-terminal a-solenoid FG-Nup.4,5 Nup358# is a metazoan specific multi-domain protein that contains FG-Nups, Ran binding domains,
multiple Zinc finger domains, an E3-SUMO ligase domain and a cylophilin domain.89
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variations of the outer ring complex in opisthokonts
have revealed an interesting architectural divergence
between yeast and metazoa. The most compelling
example is the metazoan outer ring, which despite near
identical compositional and architectural similarity
with yeast, comprises 2 reticulated rings,11,21 in contrast
to a single ring in yeast.8,15,22 Thus, architectural and
functional similarities cannot be assumed simply from
a similar list of components. The presence or absence
of a “few small b-propeller proteins” may disguise pre-
viously unsuspected and significant species-specific
elaborations of this outer ring in other eukaryotic line-
ages. Indeed, the major difference we discovered
through interactomics between trypanosomes and other
well studied taxa is the presence of 3 b-a Nups in the
outer ring complex, as opposed to just 2 in opisthokonts
and plants (Table 1). This difference in composition
may represent a completely unique outer ring structure
in trypanosome NPCs (TbNPC). Discerning the
stoichiometry, arrangement and morphology of TbNPC
components is thus clearly essentially to fully under-
stand the architecture of the trypanosome outer ring,
and hence understand its function.

An extremely well conserved component of the
outer ring complex with interesting properties is
TbNup158 (HsNup98–96 or ScNup145N/C; see
Table 1). It is easily identifiable as it encoded in
most eukaryotic genomes as a single protein com-
prised of a large N-terminal FG-Nup domain and a
large C-terminal a-solenoid separated by a b-sand-
wich that contains within it catalytic residues that
lead to its autoproteolytic cleavage into 2 separate
proteins.23 However, although the 2 proteins still
associate with one another in the NPC, it is gener-
ally believed that cleavage into 2 different polypep-
tides allows the FG-Nup domain of this protein to
be dynamic and have a role in gene regulation,
while the a-solenoid portion remains a stable struc-
tural member of the outer ring complex.24,25 The
tripeptide catalytic residues in the trypanosome
ortholog (TbNup158) have altered during evolution
to prevent cleavage, resulting in the protein being
incorporated into the TbNPC outer ring as a single
protein, possibly to eliminate this dynamism and
negate a role in gene regulation which is unusual
in trypanosomes (see below and Fig. 2). Once
again, apparently minor deviations in the composi-
tion of the trypanosome NPC can lead to signifi-
cant alterations in structure and presumably,

function. This is not limited to trypanosomes. The
same catalytic activity is lacking in another flagel-
lated excavate Giardia lamblia,4 and autoproteolytic
cleavage has been shown to be dispensable for cell
growth in fission yeast.26 Additionally, the Apicom-
plexan parasite Plasmodium falciparum has an
unusual fusion of a portion of the a solenoid
domain of this protein (ScNup145C) with PfSec
1327. Thus, trypanosomes do not represent the
exception – instead, they are part of the rule that
the outer ring complex (comprising one-third of
the NPC’s mass) can apparently vary considerably
in form and function between different organisms.

TMs and ALPS: Multiple ways to tether a leviathan

Opisthokonts also have trans-membrane (TM) pro-
teins that interact with core scaffold Nups to anchor
the NPC to the pore.3,9 Although not well con-
served,28 opisthokonts and plants all have orthologs
of Gp210 (Pom152 in yeast, Gp210 in plants and
humans) and Ndc1 (Table 1), pointing to ancient and
possibly pre-LECA origins for both proteins, as plants
- like trypanosomes - diverged early from the eukary-
otic lineage. Remarkably, we found that both proteins
are absent from the trypanosome NPC, suggestive of
secondary loss. Instead, we found that trypanosomes
rely on the ortholog of the RNA-recognition motif
(RRM) containing HsNup35/ScNup53 to anchor the
NPC.5 Nup35 is crucial for NPC biogenesis in opis-
thokonts.29 Furthermore, it connects components of
the inner ring in opisthokonts with the pore mem-
brane where it interacts via an amphipathic lipid–
packing sensor (ALPS) motif,30-32 and is a key nuclea-
tor for in vitro assembly of an inner ring complex,
raising the possibility that it is key in vivo for direct-
ing assembly of the inner ring, and so whole NPC,
from the pore membrane inwards.33 By contrast,
TbNup65 (Table 1), the trypanosome ortholog of
Nup35, instead interacts with the pore membrane
through a canonical trans-membrane (TM) domain.
Somehow, ALPS and TM domains can be inter-
changed in evolution, and there is thus plasticity in
the exact mechanism used for anchoring the NPC to
the pore membrane. Indeed, all Poms in the Aspergil-
lus nidulans NPC can be deleted without compromis-
ing the viability of the cells, in the presence of an
intact outer ring complex.34 Thus, additional anchor-
ing in trypanosomes may rely heavily on potential
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ALPS motifs that have been identified on the b-pro-
pellers of several outer ring b-a Nups in opisthokonts
32 or be provided by the lamin analog NUP-1 that co-
purifies with members of the trypanosome outer ring
complex.5,35 Unfortunately, little is known about how
the NPC assembles outside of opisthokonts, so the
role of these motifs in NPC assembly or function
remains obscure.

Through the looking glass: FG-Nups are
symmetrically distributed within the TbNPC

FG-Nups are proteins carrying significant intrinsically
disordered domains that contain multiple repeats of
degenerate phenylalanine-glycine (FG) motifs. These
domains collectively fill the central channel of the
NPC, and facilitate nucleocytoplasmic transport

Figure 2. (A) comparison between Excavate and Opisthokont NPCs and transport through them. Trypanosomes (Excavates) have a sym-
metric NPC with the exception of the nuclear basket unlike in opisthokonts (yeast and humans). Furthermore, trypanosomes lack the
cytoplasmic mRNA platform including mRNP (ribonucleoproteins) remodeling factors such as the ATP-dependent DEAD box helicase
Dbp5 and Gle1 that are crucial for mRNA export in opisthokonts.15,41 Instead, mRNA export in trypanosomes appears to rely on the
RanGDP/GTP gradient similar to protein export, as opposed to ATP in opisthokonts.5 This may be related to the unusual mechanisms try-
panosomes use for controlling gene expression. Trypanosome protein-coding genes are intronless and each gene lacks an individual
polymerase II promoter.58 Thus, trypanosome genes (green boxes) are transcribed into long multigene (polycistronic) transcripts that
are resolved into single mRNAs by trans-splicing of a mini exon, also known as the spliced leader sequence (purple box) at the 50 end of
each gene, splicing out of intergenic (orange lines) sequences and polyadenylated (AAA). Processed and export competent mRNA are
exported through the NPC by the Mex67/Mtr2 heterodimer (pink ovals). Protein coding genes in opisthokonts (and most other eukar-
yotes) have introns (orange boxes) and individual promoters (flags) and are transcribed as singly (monocistronic). Transcribed mRNAs
are co-transcriptionally 50-capped (gray circles), and introns spliced (orange lines) before export by Mex67/Mtr2 in conjunction with the
actions of the ATP dependent helicase Dbp5.
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through interactions with soluble cargo-carrying
transport factors.12 Approximately one third of FG-
Nups in opisthokonts exhibit a biased localization
within the NPC, being present either on the cyto-
plasmic side or the nucleoplasmic side of the pore.9,36

This asymmetry is required for aspects of NPC func-
tion, especially mRNA export, which relies on the
cytoplasmically biased Nup82 complex for messenger
ribonucleoproteins (mRNPs) remodeling before
release into the cytoplasm for translation by
ribosomes.15,37

There are significant differences between opistho-
kont and trypanosome FG-motif domain sequences,
making it near impossible to identify orthologs of
opisthokont FG-Nups in trypanosomes by in silico
means alone. However, through affinity capture, we
were able to identify orthologs of FG-Nups, based on
the core scaffold structure with which they associate.5

We identified inner ring (central channel) FG-Nups,
outer ring FG-Nups, a group that associates with both
inner and outer ring complexes (multi-complex) and
a third complex which we termed the TbNup76 com-
plex, which consists of TbNup76 (an ortholog of
ScNup82/HsNup88), and TbNup140 and TbNup149,
the 2 largest FG-Nups in the TbNPC (see Table 1).
One might have thought that, having identified the
associated complex, we would then know where the
FG-Nups were placed in the TbNPC. But this was not
the case. Rather, we discovered via immuno-electron
microscopy (iEM) localization that, with the exception
of the nuclear basket,5,38,39 all Nup classes and sub-
complexes were equally and symmetrically distributed
between the nuclear and cytoplasmic faces of the
NPC.5 Astonishingly, this suggests that the trypano-
some NPC lacks a clear nucleoplasmic or cytoplasmic
biased localization of FG-Nups, in complete contrast
to opisthokonts.9,36 The symmetric arrangement in
trypanosomes is consistent with the hypothesis that
inherent NPC asymmetry is not necessary for basic
nucleocytoplasmic transport.40

A major source of Nup asymmetry in opsithokonts
is the exclusively cytoplasmic ScNup82/HsNup88 sub-
complex, tethering specialized FG-Nups that provide
the interaction platform for factors critical for mRNA
export.15,37 However, TbNup76, the presumed try-
panosome ortholog of ScNup82, is located on both the
cytoplasmic and nucleoplasmic faces of the trypano-
some NPC.5 Herein lies another cautionary tale of
making sure that one does not assume that, just

because proteins are orthologous, they function in the
same way in organisms that are evolutionarily distant.
After all, a bat’s wing is orthologous to our hands!
Furthermore, the FG-Nups that associate with
TbNup76 do not bear any resemblance to the equiva-
lent Nup82/Nup88 complex FG-Nups in opisthokonts
and plants which importantly, contain N-terminal
b-propeller domains required to mediate interactions
with the ATP-dependent DEAD box RNA helicase
Dbp5 and the RNA export mediator Gle1 with its
cofactor IP6 (inositol hexakisphosphate) to form a
remodeling factory to process messenger ribonucleo-
proteins (mRNPs) before nuclear exit.41-43 In fact, no
single FG-Nup in the TbNPC contains a N-terminal
b-propeller domain.

Rules of the road: 2 major FG-Nup flavors, 2 modes
of transport?

Interestingly, despite the fact that FG-Nups are sym-
metrically distributed in the TbNPC, there still are dif-
ferent FG “flavors” (Supplementary Figure 4 in Obado
et al, 2016). A perusal of the flavors used by trypano-
somes compared with opisthokonts suggests that these
flavor types are roughly preserved, even though their
nucleocytoplasmic asymmetry is not. The more cen-
trally localized trypanosome FG Nups are enriched
predominantly in “GGFG” motifs; the multi-complex
FG-Nups, which seem to be more peripheral on the
NPC, are enriched instead in “FSFG,” “FG,” “SVFG”
and “PAFG” repeats. In opisthokonts, there are also
only a few major FG repeat flavors, the majority of
which fall into the category of either “GLFG”-like or
“FxFG”-like.44,45 We also know that there are 2 major
kinds of transport factor: karyopherin-like, and non-
karyopherin-like, with very different preferences for
FG repeat flavors.46,47 Certainly, trypanosomes show
us that FG flavor may not necessarily be all about
nucleocytoplasmic positioning or imparting a direc-
tionality to nuclear transport. Perhaps instead, these 2
major FG repeat flavors delineate specific transport
conduits for the trafficking pathways across the NPC
mediated by the 2 kinds of transport factor?

Nip and tuck: Sculpting the NPC to reflect biology

So how does the trypanosome mRNA export machin-
ery function in the absence of FG-Nup asymmetry?
Unlike protein transport, mRNA (poly-adenylated
RNA) export in opisthokonts is Ran-independent,
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being powered in an ATP-dependent manner by Dbp5
and is mediated by non-karyopherin RNA export fac-
tors (the Mex67:Mtr2 heterodimer in yeast, termed
TAP:p15 in humans),41,48-50 Fortunately, transport
factors (karyopherin and non-karyopherin) generally
are extremely well conserved across the eukaryotic
kingdom, including even in trypanosomes, which
have clear orthologs of the RNA export factors Mex67
and Mtr2.51,52

We tagged and affinity captured TbMex67 to iden-
tify the composition of any potential RNA processing
and export factors in trypanosomes. As well as its
partner TbMtr2,51 TbMex67 associates strongly with
the TbNup76 complex, even though this is found on
both sides of the NPC; in opisthokonts, Mex67 associ-
ates strongly with the Nup82/Nup88 complex, as one
might expect.41,50 However, no potential orthologs of
Dbp5 and Gle1 co-isolated with TbMex67, or even
found in the genome.5 So, although at least some
aspect of the function of this complex – binding to
RNA export factors – seems to be conserved in trypa-
nosomes, it does so in a very different spatial context
and by a different mechanism that lacks the antici-
pated helicase processing factory. In addition,
TbMex67 bound strongly to the GTPase Ran, to Ran
binding protein 1 (RBP1) and to a GTPase activating
protein (GAP). In opisthokonts, Ran, RBP1 and Ran-
GAP work in synchrony to expedite the hydrolysis of
RanGTP to RanGDP in the cytoplasm to facilitate the
release of protein cargo from a RanGTP-karyopherin
complex.53-55 Therefore, the co-isolation of Ran, RBP1
and the GAP with the non-karyopherin transporters
Mex67-Mtr2 is extremely unusual and has not been
previously observed in other organisms. This suggests
that unlike in opisthokonts and plants, GTP and not
ATP powers mRNA export in trypanosomes. Interest-
ingly, non protein coding RNA in opisthokonts, such
as tRNAs, small nuclear RNAs, micro RNAs and pre-
ribosomal subunits, are exported out of the nucleus on
a Ran gradient by karyopherins, similar to protein
export (reviewed in 47,56). Additionally, a small subset
of mRNA export is dependent on the karyopherin,
Exportin 1 (Crm1).57 Thus trypanosomes appear to
have modified their NPC and the Ran-mediated
export pathways, a system that already has enormous
flexibility, expanding it to include all transport,
including mRNA export. Why have they done this?
We don’t know; we have speculated it may be linked
to their rather unusual mechanisms for controlling

gene expression. Trypanosome protein-coding genes
are intron-less, lack individual RNA polymerase II
promoters and are organized into large polycistronic
transcription units (Fig. 2).58,59 Thus, the regulation of
gene expression relies mainly on mRNA turnover and
translation rates.60,61 Hence, perhaps gene expression
is controlled at the point of nucleo-cytoplasmic export
through differential export in a highly regulated man-
ner. In addition, the exclusive trans-splicing of pro-
tein-coding mRNAs in trypanosomes (Fig. 2) may
also relax requirements for extensive chaperoning
during nuclear export. Moreover, these results indicate
that the asymmetric localization of many FG Nups in
opisthokont NPCs is at least in part strongly associ-
ated with the co-transcriptionally linked mRNA proc-
essing and export pathway, with the final stages of
mRNA processing embedded in the NPC in opistho-
konts, and asymmetrically disposed FG Nups provid-
ing the necessary docking sites. Thus, quality control
occurs at the nuclear basket and nucleoplasmic FG-
Nups and then the remodeling of mRNPs to facilitate
export occurring at the cytoplasmic end of the
NPC.15,62

In any case, all this underscores the intimate link
between the NPC and gene expression, as well as the
incredible flexibility of the NPC, which although prob-
ably fully formed at LECA has the capacity to mold
and adapt its structure to the demands of individual
lineages by acting as an interaction platform for sev-
eral nuclear processes while still maintaining its struc-
tural core and primary function as a transport hub.

What do we now know about the evolution of the
NPC?

The origin of eukaryotes and the events surrounding
the transition from prokaryotes to eukaryotes remain
obscure despite several attempts at reconstructing the
pathways involved. Trypanosomes diverged early in
eukaryotic evolution and can provide important evo-
lutionary insights into fundamental cell biologic pro-
cesses shared by all eukaryotes. Indeed, several key
features of molecular biology have first been identified
in trypanosomes. Examples include antigenic varia-
tion, GPI-anchored proteins, RNA editing, polycis-
tronic transcription and trans-splicing.63-67 Originally
considered a “quirky” character of these parasites,
these fundamental biologic processes have now been
found to be common in other eukaryotes (including
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RNA editing in mammals,68,69 polycistronic transcrip-
tion and trans-splicing in the nematode Caenorhabdi-
tis elegans).70,71 Now, the trypanosome is performing
this function again, providing insights into the struc-
ture and evolution of the NPC and mechanisms of
nucleocytoplasmic transport.

The shared evolutionary relationship between the
NPC core scaffold and the endomembrane system is
well documented.18 Furthermore, the 2 large yeast
inner ring a-solenoid ScNups188/192 (Table 1) share
architectural features with karyopherins (also a-sole-
noid proteins), suggestive of a co-evolution of trans-
port factors, structural components of the NPC, and
the endomembrane trafficking system.72,73 Indeed, it
is noteworthy that the assembly of vesicle coats and
the translocation of proteins through membranes are
controlled by Ras-like GTPases termed Rabs,74 just as
the translocation of cargo in the NPC is controlled by
the Ras-like GTPase, Ran.

The symmetry of the TbNPC alludes to our previ-
ous theory that there may have been a stepwise acqui-
sition of complexity in the NPC in the FECA to LECA
transition in which an early non-specific pore com-
prised of coating proteins but lacking a gating func-
tion (Fig. 3).17,18 Later, the evolution of FG-Nups led
to a more sophisticated gating system, that was further
elaborated to include cytoplasmic and nucleoplasm
biased FG-Nups and to include the elaborate mRNA
export machinery in opisthokonts (Fig. 3).

Trypanosomes have no cytoplasmic or nucleoplas-
mic biased FG-Nups. However, they have retained a
level of asymmetry through the addition of the nuclear
basket, which interestingly appears to have a distinct
evolutionary history to that of opisthokonts.38,39 In
the opisthokonts and plants, the nuclear basket is
composed of large (»200–250 kDa) coiled coil pro-
teins, that associate with and coordinate several
nuclear peripheral processes, thereby extending NPC
functionality.36,62,75-78 Although the 2 nuclear basket
proteins are much smaller (»100kDa) in trypano-
somes, our study showed by iEM, that they extend an
average of 36nm into the nucleoplasm from the center
of the TbNPC.5 Additionally, they have retained simi-
lar functions to those in other eukarya, by creating
heterochromatin free zones around nuclear pores that
are evident by electron microscopy in all eukaryotic
nuclei, as well as recapitulating interactions with the
spindle organizer.4,38,79-81 Thus, in conjunction with
divergent lamin-like proteins,35,82 and unconventional

kinetochores,83 it seems that the trypanosome nucleus
uses unique protein complexes in parallel with con-
served core elements such as the spindle microtubules
and outer kinetochore components, Ndc80/Nuf2 to
facilitate trypanosome biology.84,85

Did trypanosomes retain an ancient symmetric
assembly or reconfigure their molecular biology
through the loss of introns and individual gene pro-
moters (Fig. 2) and thereby dispense with the need to
utilize ATP as an energy source for separately power-
ing mRNA export? Perhaps investigations of the
nuclear transport machineries in other divergent
eukaryotes will help answer this question. Indeed, a
recent study has shown that mRNA export pathways
in Apicomplexa also appears to be divergent86; in
addition, so far investigators have been unable to iden-
tify any Mex67 orthologs in Toxoplasma gondii, indi-
cating that this organism may be even more divergent

Figure 3. Evolution of the NPC. We propose a model in which the
NPC evolved gating functions in a stepwise manner starting with
a simple coat that acquired complexity through a series of dupli-
cations as observed in endomembrane trafficking.17,18 This then
led to the evolution of FG-Nups and then further diversification
into the current metazoan type NPC with a nuclear basket and
cytoplasmic filaments.
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than trypanosomes in its nucleocytoplasmic transport
machineries.86 In fact, very little is known about
mRNA processing and export in most protists. Thus
our study highlights and reinforces the need to sample
and study a broad distribution of eukaryotic taxa to
gain insight into evolutionary origins of function and
mechanism at the nuclear envelope – as well as of
course in many other cellular processes.
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