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Endocytosis is a crucial process in eukaryotic cells. The GTPases Rab 5, 21 and 22 that mediate

endocytosis are ancient eukaryotic features and all available evidence suggests retained con-

served function. In animals and fungi, these GTPases are regulated in part by proteins possessing

Vps9 domains. However, the diversity, evolution and functions of Vps9 proteins beyond animals

or fungi are poorly explored. Here we report a comprehensive analysis of the Vps9 family of

GTPase regulators, combining molecular evolutionary data with functional characterization in the

non-opisthokont model organism Trypanosoma brucei. At least 3 subfamilies, Alsin, Varp and

Rabex5 + GAPVD1, are found across eukaryotes, suggesting that all are ancient features of reg-

ulation of endocytic Rab protein function. There are examples of lineage-specific Vps9 subfamily

member expansions and novel domain combinations, suggesting diversity in precise regulatory

mechanisms between individual lineages. Characterization of the Rabex5 + GAPVD1 and Alsin

orthologues in T. brucei demonstrates that both proteins are involved in endocytosis, and that

simultaneous knockdown prevents membrane recruitment of Rab5 and Rab21, indicating con-

servation of function. These data demonstrate that, for the Vps9-domain family at least, modula-

tion of Rab function is mediated by evolutionarily conserved protein-protein interactions.
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1 | INTRODUCTION

During endocytosis, cells take up and deliver extracellular and surface

material to early endosomes. These subsequently undergo a matura-

tion process, together with sorting of cargo, prior to either lysosomal

degradation, recycling to the surface, or transport elsewhere within

the cell. The Rab5 GTPase subfamily and its close relatives Rab21

and Rab22 are key regulators of multiple endocytic steps and pro-

cesses. They participate in fusion of plasma membrane-derived

clathrin-coated vesicles with endosomes, endosomal maturation and

also homotypic endosome fusion. Furthermore, Rab proteins define

membrane subdomains within endosomal structures, which facilitate

many of these processes. Rab5 also interacts with vesicle cargo, the

cytoskeleton, and signal transduction factors to coordinate vesicular

movement and organellar maturation within the early endocytic

system.

Comparative genomic and phylogenetic analyses have demon-

strated the presence of Rab5, Rab21 and Rab22 subfamily members

across the breadth of eukaryotes1,2 indicating that these Rabs were

likely present in the Last Eukaryotic Common Ancestor (LECA). This

is confirmed by the characterization of Rab5 orthologues in diverse

eukaryotes representing each of the 5 eukaryotic supergroups,3 and

highlights the importance of this particular Rab protein and its func-

tions to eukaryotic cells in general.

The GTP cycle of Rabs is regulated by GTPase-activating proteins

(GAPs) and Guanine nucleotide Exchange Factors (GEFs), which accel-

erate the hydrolysis of GTP and exchange of GDP for GTP, respec-

tively. While the evolution of Rab GAP protein families has been

examined,4 the distribution and evolution of Rab GEFs is less well-

understood. Numerous Rab5 subfamily effectors have been identified

in animal and fungal organisms, suggesting a complex network of

interacting proteins.5 The known Rab5 GEFs are characterized by a
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Vps9 domain. The core catalytic region of human Vps9 proteins is

comprised of a bundle of 4 alpha-helices N-terminal to the six-helix

Vps9 domain, with a final C-terminal helix.6 Rab5 binds in a shallow

hydrophobic groove between the V4 and V6 helices of the Vps9

domain in both human6,7 and plant8 structural analyses. As proteins

containing Vps9 domains have been characterized or identified from

organisms in different eukaryotic supergroups, some form of Vps9

protein was likely present in the LECA.9–12

The LECA possessed a sophisticated membrane trafficking sys-

tem (MTS), at least as complex in terms of the number of compo-

nents, and by inference pathways, as that of most extant

eukaryotes,13 with lineage-specific gene family expansions of MTS

machinery generating organellar and trafficking pathway diversity.

While there is a canonical pan-eukaryotic complement of Rabs and

Rab effectors, there have also been numerous lineage-specific expan-

sions and contractions, likely as part of the process of adaptation to

specific environments.1,14 In line with this, though Rab5 is ancient

and found across eukaryotes, it has undergone independent gene

duplication events in many lineages, suggesting ongoing specialization

of the early endocytic system.14,15 Like Rab5, multiple Vps9 domain-

containing GEFs are present in mammals: Vps9/Rabex5, VPS9-

ankyrin-repeat protein (Varp), Ras and Rab Interactors (RIN) 1-3,

Alsin, GAPVD1 and Vps9 domain-containing protein 1 (Vps9DCP1).16

Each of these proteins is involved in interactions with Rab5, or its

close relatives, and plays a role in endocytosis in animal or yeast cells.

However, the evolution of these families remains unexplored, and

hence the level of conservation in Rab5 regulation and coordination

in diverse eukaryotes remains to be examined.

We used comparative genomics to identify Vps9 domain proteins

across eukaryotes and classified them using a Scrollsaw-style phylo-

genetics approach.1 Then, in order to determine how Vps9 family

proteins may function in organisms outside of the Opisthokonta

(animals and fungi), we performed localization and knockdown experi-

ments of the 2 Vps9 paralogues in the excavate parasite Trypanosoma

brucei, a divergent organism with a comparatively well-characterized

endosomal system.

2 | RESULTS

2.1 | Vps9 domain-containing proteins are pan-
eukaryotic

We interrogated predicted proteomes from 48 genomes and 9 amoe-

bozoan transcriptomes, because the Amoebozoa are represented by

fewer fully sequenced genomes than the remaining supergroups. We

used functionally characterized human Vps9 domain-containing pro-

teins as BLASTp queries, followed by a more stringent search, where

the Pfam Vps9 domain hidden Markov model was used in HMMer

searches. Using these methods, 311 Vps9 domain-containing proteins

were identified (Figure 1, Table S1). Most genomes encoded more

than 1 Vps9 domain-containing protein, and only a few apparently

lack Vps9-domain proteins, specifically the excavate Giardia

intestinalis, and the red algae Cyanidioschyzon merolae and Galdieria

sulphuraria.

Initial attempts to classify these sequences using phylogenetics

generated trees with no resolution, owing to the relatively short

Vps9 domain (104 amino acids) and high rate of lineage-specific

sequence evolution. We therefore took the following approach. A

well-curated alignment of metazoan Vps9 domain sequences was cre-

ated, which generated Bayesian and maximum-likelihood phylogenies

with strong backbone support for individual clades. These clades

largely contain sequences with identical domain organization to their

human orthologues, and which retrieve the human orthologue as the

top hit in BLASTp searches into Homo sapiens. Using this backbone

alignment (excluding only 2 long-branching sequences), we iteratively

aligned individual sequences from each supergroup or subclade

therein to generate a series of trees classifying all recovered Vps9

domain sequences. Clade-specific phylogenies of all Vps9 domain-

containing sequences are found in Figure S1A-R, while the original

metazoan backbone tree is found in Figure S1S. While many Vps9

domain-containing sequences across eukaryotes could be classified

as orthologous to those characterized in human and yeast, others

could not be classified in this way (Figure 1). In some cases, these

sequences are clade-specific expansions that have not yet been func-

tionally characterized because of their absence from typical model

organisms (eg, a clade of Stramenopile-specific Vps9 domain-

containing proteins, Table S1). In other cases, the failure to classify

these sequences may be because of high levels of sequence diver-

gence, raising the possibility of neofunctionalization.

2.2 | There were at least three primordial Vps9
family proteins in the LECA

In order to confirm that these trees reflect real evolutionary relation-

ships between the sequences, we then used the Scrollsaw method1

to generate a pan-eukaryotic phylogeny of Vps9 sequence evolution.

The shortest-branching taxon from each subclade in each MrBAYES-

generated supergroup tree was selected and carefully aligned. In

cases where trees were generated for multiple subclades within a

supergroup, the human RIN2 sequence was used as a standard

against which branch lengths were compared, as RIN is clearly

restricted to the Holozoa, and therefore the branch lengths within

this clade should remain relatively stable between trees. Phylogenetic

trees were generated from this alignment, showing that there are at

least 3 Vps9 clades that are pan-eukaryotic: Vps9DCP + Alsin,

Rabex5 + GAPVD1 and Varp (Figure 2). The Rabex5 + GAPVD1

clade splits into clear Rabex5 and GAPVD1 sequences in the Amor-

phea (Amoebozoa and Opisthokonta, Figure S1A-K), suggesting an

ancient, but post-LECA, gene duplication event prior to the split of

the Amoebozoa and Opisthokonta supergroups. However, we found

no evidence for such a post-LECA duplication within Vps9DCP +

Alsin megaclade. Rather, both Alsin and Vps9DCP were clearly dis-

tinct from Varp and Rabex5 + GAPVD1 and based on their pan-

eukaryotic distributions (see below) may well represent individual

LECA clades, despite their being united in an unresolved clade in

Figure 2.

We therefore conservatively deduce at least 3 (and possibly 4)

Vps9 domain-containing proteins in the LECA, and through the radia-

tion of eukaryotes, this family has undergone expansion, innovation,
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FIGURE 1 Phylogenetic classification of Vps9 family proteins across the eukaryotes. A general phylogeny is shown on the left, with an agnostic

root (based on References 17–19. Supergroups and large clades are coloured as follows: pink, Holozoa; purple, Fungi; dark blue, Apusozoa
(outgroup of Obazoa); light blue, Amoebozoa; orange, Excavata; green, Archaeplastida and Cryptophyta; red, SAR and Haptophyta. A filled circle
indicates the presence of a protein with numbers indicating the number of paralogues, as classified by phylogenetics. A dash indicates failure to
identify a sequence in that clade. It should be noted that many of the amoebozoan datasets are transcriptomes, denoted by an asterisk;
therefore no statements of absence can be made for these taxa
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maintenance and loss. In order to gain more detailed evolutionary

insight into the Vps9 subfamilies, each was treated in turn.

2.3 | Varp and Vps9 domain-containing protein are
pan-eukaryotic, but with patchy distribution

Varp contains 2 sets of 4 ankyrin repeats, followed by a Vps9

domain. Varp appears to link multiple stages of endocytosis. Although

it has weak GEF activity for Rab5 in vitro, it is required for activation

and endosomal localization of Rab21.20 In addition to Rab5 interac-

tions, Varp and the retromer coat complex coordinate to promote

recycling of cell surface receptors from endosomes.21 It interacts with

Rab32 and the closely related Rab38,22–25 which are involved in

lysosome-related organelle and autophagic vacuole biogenesis.

As shown by the individual supergroup and subclade trees

(Figure S1A,C-F,J-P), and by Scrollsaw (Figure 2), Varp is present

across the diversity of eukaryotes, albeit lacking ankyrin repeats out-

side of Opisthokonta. Furthermore, we generated a tree containing

all candidate Varp sequences and metazoan backbone sequences,

and all form a well-supported clade with the metazoan sequences

(Figure S1Q). There are examples of Varp orthologues with the Vps9-

ankyrin domain structure in basal Fungi (Fonticula alba) and basal

Holozoa (Capsaspora owczarzaki), so presumably a Varp protein with

this domain structure was present in their common ancestor.

Searches into the genome of Thecamonas trahens, an apusozoan

organism that diverged prior to the split of animals and fungi, also

identified a Varp homolog (Figure S1Q), but it appears to lack ankyrin

repeats (Table S1).

Several proteins were also identified with similar domain structure

to mammalian Varp; however, phylogenetics shows them to have a

distinct history. In Dictyostelium discoideum, a protein with the domain

structure ankyrin-ankyrin-Vps9 was identified—a reversal of the mam-

malian domain organization—but this sequence was clearly excluded

from the Varp clade in the Dictyostelium subclade trees (Figure S1D,

sequence DdVarpL2). Furthermore, in the stramenopiles Ectocarpus sili-

culosus and Aureococcus anophagefferens, 2 proteins were identified

Rabex+GAPVD1

1.00/1.00/100

Alsin+Vps9DCP

0.91/0.92/100

Varp
0.83/0.81/98

T. brucei  Rabex+GAPVD1 (TbRabexA)

D. discoideum Rabex+GAPVD1 (DDGAP9A)

L. gigantea GAPVD1 (LgGAP9)

F. alba GAPVD1 (FaGAP9)

A. thaliana Rabex+GAPVD1 (AtGAP9A)

T. gondii  Rabex+GAPVD1 (TgRabex)

A. limacinum Rabex+GAPVD1 (AlRabexA)

B. natans Rabex+GAPVD1 (BnRabex)

Pessonella sp. Rabex (Pes7)

H. sapiens Rabex (HsRabex) 

F. nolandi  Rabex+GAPVD1 (Filno3) 

C. owczarzaki  Varp (CoVarp) *

N. gruberi  Varp (NgAlsinA)

Trichosphaerium sp. Varp (Tri5)

T. gondii  Varp
(TgUnkn)

B. natans  Varp (BnVarpL1)

A. limacinum  Varp (AlAlsin) 

M. verticillata  Varp (MvVarp) * 

* contains Vps9, Ank, Ank domain structure

C. owczarzaki  Vps9DCP (CoV9DCP3e) 

A. limacinum Vps9DCP
(AlV9DCP)

C. owczarzaki Alsin (CoAlsin)

Trichosphaerium sp. 
Alsin (Tri9)

Trichosphaerium sp. Vps9DCP (Tri2)

> 0.99/0.99/95
> 0.80/0.80/50

S. moellendorffii Varp (SmVarpL)
FIGURE 2 Scrollsaw tree of Vps9

family proteins. The shortest branching
sequence of each supergroup or
subclade for each Vps9 subfamily was
included in the scrollsaw tree. The tree
is shown with Phylobayes, MrBAYES
and RAxML node support values
(Phylobayes posterior probability/
MrBAYES posterior probability/RAxML
bootstrap) on the Phylobayes topology.
Sequences are color-coded as in
Figure 1. Taxa are named as per their
phylogenetically validated classification,
with their unique identifier from
Table S1 in parentheses. There are
3 obvious clades of Vps9 family
proteins: Rabex5 + GAPVD1, Varp and
Alsin+Vps9 domain-containing protein,
separated by grey boxes

HERMAN ET AL. 549



with DUF47-Vps9-Ankyrin-Ankyrin (Esi0135_0039) and Vps9-

Ankyrin-Ankyrin (70964) domain organization, respectively. Phyloge-

netic analysis revealed that these sequences are part of the Rabex +

GAPVD1 clade rather than Varp (Figure S1P). This is a clear example

of convergent evolution in the Vps9 family of proteins, where Vps9

together with ankyrin repeat domain proteins were acquired indepen-

dently at least 3 times. This repeated origin suggests that the combina-

tion is functionally relevant; however, it is not clear whether these

additional Vps9/ANK-domain proteins are functionally analogous to

opisthokont Varp proteins or have distinct activity.

Varp is recruited to endosomes by direct interactions with retro-

mer subunit Vps29 through 2 CHPLCxCxxC motifs.21 This critical

motif appears to be conserved in Holozoa, as it is present in

C. owczarzaki. While a Varp homologue was identified in S. cerevisiae

(both here and by Bean et al26), it lacks this motif. The motif is also

absent from Varp-like homologues identified in other eukaryotes indi-

cating that the cysteine-rich motif appears to be a Holozoa-specific

innovation.

Unlike the other Vps9 proteins, little is known functionally about

Vps9DCP1 in mammals or yeast. We consistently recovered clades of

Vps9 domain-containing proteins (Vps9DCPs) in supergroup and sub-

clade trees that appear to be orthologous to the human Vps9

domain-containing protein (Figure S1A,E-G,J,N,O). Orthologues have

been positively identified in members of the Holozoa, Amoebozoa,

Stramenopile clade, and in the haptophyte Emiliania huxleyi. However,

they have been lost independently in many lineages, including Fungi,

excavates, archaeplastids, alveolates and Rhizaria.

2.4 | Alsin is present in Opisthokonta, Amoebozoa
and Excavata, and lost in the ancestor of
stramenopiles, alveolates, and Rhizaria (SAR) and
Archaeplastida

Another ancient Vps9 subfamily is Alsin. Alsin has a C-terminal Vps9

domain which promotes the dissociation of GDP from Rab5,27 and it

has been shown to colocalize with early endosome antigen 1 (EEA1)

and stimulate endosome-endosome fusion.28 Mutations in the Alsin

gene are associated with ALS,29 juvenile-onset primary lateral

sclerosis,30 and infantile-onset hereditary spastic paraplegia.31

Through its central diffuse B-cell lymphoma (Dbl), diffuse homology

(DH) and plekstrin homology (PH) domains, which interact specifically

with the Rho family protein Rac1,28 Alsin promotes macropinocytosis

and macropinosome-endosome fusion.32 In addition to the role in

endosome-endosome and macropinosome-endosome fusion, Alsin

and its interacting partner Rac1 are enriched in membrane ruffles

and lamellipodia of migrating cells. Between the DH/PH and Vps9

domains are 8 membrane occupation and recognition nexus (MORN)

motifs, implicated in plasma membrane binding.33

We identified Alsin in the Holozoa and in the amoebozoans Tri-

chosphaerium, Mayorella, and potentially in Sexangularia (Figure S1F,I,J).

Interestingly, Alsin appears to be lost in the Fungi (Figure S1B). One of

the characteristic features of human Alsin is the presence of MORN

repeats. Only a few amoebozoan Alsin homologues have both MORN

repeats and a Vps9 domain, while others possess only a Vps9 domain

(Table S1). In the Excavata, there are clear Alsin orthologues in the

trypanosomatids and Bodo saltans, which retain the MORN-Vps9

domain structure (Figure S1K). Two N. gruberi sequences were also

identified with these domains, but their phylogenetic position could

not be resolved. Alsin orthologues could not be identified in any SAR

or archaeplastid taxa. This suggests that an ancestral Alsin homolog

was present in the LECA but subsequently lost from SAR and plants.

2.5 | Rabex5 and GAPVD1 evolution in Amorphea

The final ancient Vps9 subfamily is the clade of Rabex5 and

GAPVD1. Originally identified in the yeast Saccharomyces cerevisiae

as VPS9 because of its mutation resulting in impaired vacuole acidifi-

cation (class D vps mutant),34 both yeast Vps9p and the mammalian

orthologue Rabex-5 contain domains allowing them to bind ubiquiti-

nated cargo (coupling of ubiquitin to ER degradation (CUE) domain

and A20-like Cys2/Cys2 zinc-finger, respectively).35–38 Through

recruitment of Vps21p39 or Rab5,40 Rabex5 proteins are involved in

endosome maturation and multivesicular body biogenesis. GTPase

activating protein and VPS9 domain-containing protein 1 (GAPVD1),

like other Vps9 proteins, interacts with Rab5, but is thought to func-

tion prior to the early endosome, as it does not colocalize with EEA1

in Caenorhabditis elegans. Rabex5 (or Vps9p in yeast) acts down-

stream, and in complex with the Rab5 effector Rabaptin-5, it is essen-

tial for homotypic endosome fusion.40 In addition to Rab5, Rabex5

interacts with other Rabs in mammals, including Rab17, Rab21 and

Rab22.41,42 GAPVD1 is named as such in humans owing to its N-

terminal RasGAP domain that has specific activity for H-RAS, and the

C-terminal Rab5-interacting Vps9 domain.43 It was originally identi-

fied in C. elegans (and named RME-6) by Sato et al, who demon-

strated its specific interaction with Rab5, and interaction with the

clathrin adaptor complex protein AP-2α.44 It is localized to the cell

surface in a clathrin-dependent manner and functions in the initial

stages of endocytosis.

A single clade-containing Rabex5 + GAPVD1 sequences was

recovered in our Scrollsaw analysis (Figure 2). In each subclade tree

(Figure S1), we consistently identified outgroup sequences to the

individual Rabex5 and GAPVD1 clades, and which often formed

strongly supported Rabex5 + GAPVD1 megaclades. These Rabex5 +

GAPVD1-related sequences are found in nearly every organism with

Vps9 domain-containing proteins, and often in multiple copies, sug-

gesting an important and potentially conserved role. The sequences

grouping in this megaclade that are excluded from Rabex5 and

GAPVD1 subclades typically have only a Vps9 domain, although

there are some lineage-specific exceptions (Table S1). Based on phy-

logenetic analysis of individual subclades, clear orthologues of human

Rabex5 and GAPVD1 appear only in the Amorphea. GAPVD1 pro-

teins are found in the amoebozoans Trichosphaerium sp., and

D. discoideum (Figure S1D,J,R), and the latter contains both a RasGAP

and Vps9 domain, identical to the domain organization of the human

orthologue. A further analysis of Rabex5- and GAPVD1-related

sequences in Amorphea revealed another GAPVD1 homolog in the

amoebozoan Sexangularia sp. (Figure S1I). There is also a GAPVD1 in

the basal holomycotan organism F. alba (Figure S1B), but not in any

other fungal genomes searched. Interestingly, the RasGAP domain

has been patchily lost from holozoan GAPVD1 sequences, and the
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entire GAPVD1 subfamily appears to have been lost in the Fungi,

after the divergence of F. alba. The GAPVD1 clade's origin and pres-

ence of the eponymous RasGAP domain can be placed at least as far

back as the split of the Amorphea, but it may be even more ancient,

as there is a single putative GAPVD1 sequence in Naegleria gruberi,

with RasGAP and Vps9 domains, but has limited phylogenetic support

(Figure S1K).

2.6 | RIN is a holozoan innovation

However, not all Vps9 subfamilies are ancient. RIN proteins are capable

of binding Ras, and play roles in cell signaling,43 migration and

adhesion,45–47 thereby linking Rab5-mediated endocytosis and cell

signaling.48,49 In addition to GEF activity for Rab5, RIN proteins are

involved in Ras binding, as well as endocytosis of various signalling

molecules at the cell surface. There are 3 members in humans, RIN 1-3,

which are characterized by an N-terminal SH2 domain, a Vps9 domain

and a C-terminal Ras-association domain.

From the limited metazoan taxa analysed, the duplication leading

to several paralogues in human appears to have occurred prior to the

divergence of bony fish (Figure S1A). RIN orthologues could only be

reliably identified in Holozoa, with a Vps9 and RAS association

domain-containing RIN homolog in the filasterian C. owczarzaki

(Figure S1A). However, there is low support for a potential RIN in

D. discoideum (XP_641280.1), which groups with the metazoan RIN

clade in a D. discoideum subclade tree (Figure S1D). A conservative

assessment of RIN proteins would place the origin of RIN prior to the

divergence of the Filasteria. Given that RIN proteins are involved in

cell migration through their interaction with Ras, resulting in endocy-

tosis of cell surface proteins that mediate extracellular matrix contact

and cell-cell adhesion, it is unsurprising that this subfamily of Vps9

proteins is restricted to multicellular animals and their single-celled

relatives.

2.7 | Novel domain innovation in Vps9 proteins
across eukaryotes

Just as RIN appears to be a holozoan innovation, there are several

examples of Vps9 family expansions or novel domain acquisitions in

various eukaryotic lineages. The most obvious example is the previ-

ously discussed zinc finger and CUE domain additions to Rabex5 fam-

ily proteins in Holozoa and Fungi, respectively. In ochrophyte

stramenopiles, there are Vps9 family proteins with a PDZ domain, fol-

lowed by a PX domain, and a C-terminal Vps9 domain (Table S1).

PDZ and PX domains both target proteins to cell membranes, anchor-

ing membrane proteins to cytoskeletal components and binding

phosphatidylinositol 3-phosphate phospholipids, respectively. This

suggests another independent example of Vps9 family proteins

potentially linking endocytosis with membrane and cytoskeleton

interactions. Additionally, there are numerous examples of Vps9 pro-

teins in individual taxa that include additional domains, such as P-loop

NTPase, RasGAP domains, CAP-Gly domains, PH domains, zinc finger

and kelch domains, although the relationship of these proteins with

metazoan Vps9 sequences is often unclear. It is also possible that

genome misassembly may be the source of some of the novel domain

additions observed; however, this is unlikely, particularly when seen

across multiple taxa.

2.8 | Identification and annotation of Vps9 proteins
in T. brucei

Nearly all characterization of Vps9 domain proteins has been in ani-

mal and fungal models. To provide complementary functional infor-

mation from a distantly related model organism, we chose to

characterize 2 Vps9 family proteins in T. brucei. As excavate subclade

phylogenies were poorly resolved (Figure S1K), in order to classify

the T. brucei Vps9 proteins, we constructed trees with only the try-

panosome and metazoa backbone sequences. We found that these

sequences group with Alsin (Tb927.3.2430, designated here TbAlsin)

and Rabex5 + GAPVD1 (Tb927.10.10020, designated here TbRa-

bex5) (Figure 3). Domain analysis shows that TbAlsin contains MORN

repeats, similar to Alsin-like sequences from other non-metazoans

(Table S1). Transcription of both genes in bloodstream and insect

stages was confirmed by qRT-PCR (Figure S2A,B), confirming previ-

ously published transcriptome data.50,51

2.9 | Subcellular localizations of T. brucei Vps9
proteins

TbAlsin and TbRabex5 were ectopically tagged to determine their

subcellular locations. Immunofluorescence in BSF cells localized

FLAG::TbRabex5 to puncta between the nucleus and kinetoplast, the

region of the cell containing the flagellar pocket, endosomes and

Golgi complex. In the vast majority of cells two separate puncta were

observed: one closer to and anterior to the flagellar pocket and the

other deeper and posterior to nucleus (Figure 4B). To rule out the

possibility of mistargeting because of the epitope tag, HA-tagged

TbRabex5 was also localized, with very similar localization to the

FLAG-tagged form (Figure 4B). Furthermore, localization of this pro-

tein by endogenous genome tagging at TrypTag (tryptag.org) in the

insect form is consistent with this location. The localization of TbRa-

bex5 is similar to metazoan Rabex5, which resides on endosomes.52

Western blotting of cell lysates of cells expressing tagged TbRabex5

detected an antigen of 66 kDa, consistent with the predicted molecu-

lar weight (Figure 4A).

HA::TbAlsin was predominantly cytosolic (Figure 4C). Signifi-

cantly, the human orthologues ALS2 and ALS2CL are also cytosolic in

a majority of cells when overexpressed separately, but both MORN

Vps9 GEFs localize to membranous compartments when coex-

pressed.27,53,54 Western blotting for HA-epitope tagged TbAlsin iden-

tified a band of the expected size of 103 kDa (Figure 4A). Further

analysis of the location of this protein proved inconclusive and the

possibility that the protein is mislocalized because of overexpression

cannot be excluded. Significantly localization by genomic tagging in

the insect stage at TrypTag is consistent with endomembrane target-

ing, supporting this possibility (tryptag.org). Ectopic expression of

both TbRabex5 and TbAlsin had no significant impact on proliferation

(data not shown).

To determine the likely compartments with which TbRabex5

associated, cells were co-stained with known T. brucei endosomal
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markers using specific antibodies. TbRabex5 partially overlapped with

TbRab5A; a well characterized marker of early endosomes.55 In

T. brucei early endosomes reside closer to the nucleus56 where TbRa-

bex5 exhibited partial coincidence, while a distinct population was

also seen close to the flagellar pocket in some cells (Figure 5A). Co-

staining of TbRabex5 and TbRab21 was performed using cells expres-

sing tagged versions of both proteins, and tagged TbRab21 appeared

to colocalize with TbRabex5 in the vast majority of cells (Figure 5B).

In the absence of 3D reconstruction complete colocalization cannot

be inferred, but the size, shape and number of puncta showing coinci-

dence staining were identical for both TbRabex5 and TbRab21. The

FLAG-tagged TbRabex5 also showed partial colocalization with cla-

thrin heavy chain, which was expected as clathrin associates with

multiple endosomal compartments in trypanosomes (Figure 5C).57 If

TbRabex5 is indeed a GEF for endocytic Rabs, the flagellar pocket

localization and proximity/colocalization with TbRab5 and TbRab21

could indicate a role in Rab activation at sites of endocytic vesicle

formation.

2.10 | Roles of TbAlsin and TbRabex5 in
endocytosis

To gain functional insights into the roles of the 2 Vps9 proteins in

trypanosomes, we silenced each using RNAi. For TbRabex5, a 50%

reduction in the rate of BSF cell proliferation was observed following

induction for 2 days (Figure S2C,D). Knockdown was validated by

western blotting using the HA::TbAlsin RNAi cell line and after

24 hours induction TbRabex5 was undetectable. Similarly, knock-

down of TbAlsin resulted in a roughly 50% reduction in BSF prolifera-

tion, with an >80% reduction in the level of HA-tagged protein after

24 hours of induction (Figure S2E,F). Significantly, neither of these

individual knockdowns resulted in an observable morphological

defect. As Vps9 domain proteins in other systems are frequently

redundant in terms of GEF activity against Rab5, a double knock-

down was attempted. When induced, these TbAlsin/TbRabex5

knockdown cells exhibited a stronger proliferative defect compared

to single knockdowns (Figure 6A), and western analysis revealed

complete loss of both proteins after 24 hours of RNAi (Figure 6D).

While it is possible that the defect observed in the double knock-

down cells is the result of a synthetic interaction, this is unlikely to

be the case given the high efficiency of both single knockdowns.

The morphology and cell cycle progression of the double Vps9

knockdown cells was examined daily post-induction. By day 3 cultures

showed an accumulation of cells with multiple kinetoplasts and nuclei

(>2K/2N), compared to uninduced control cultures (Figure 6B). This

accumulation suggested a cytokinesis defect but the late emergence

of the phenotype also suggested a potential secondary defect.

Enlargement of the flagellar pocket—the big eye phenotype related to
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FIGURE 3 Metazoa backbone tree

including T. brucei and T. cruzi Vps9
proteins. Trypanosome Vps9 sequences
were classified using the metazoa backbone
tree shown in Figure S1S. In cases where
multiple members of a subfamily are
present per taxon, the unique identifier
from Table S1 is given in parentheses. The
tree is shown with Phylobayes, MrBAYES
and RAxML node support values
(Phylobayes posterior probability/MrBAYES
posterior probability/RAxML bootstrap) on
the Phylobayes topology. Trypanosome
sequences are bolded. TbRabex5
(TbRabexA) and TcRabexA group within the
Rabex5 + GAPVD1 clade, and TbAlsin
(TbRabexB) and TcRabexB group within the
Alsin clade, all with significant support
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silencing of early endosomal proteins like TbRab5A, TbRab5B and cla-

thrin58,59—was not observed following silencing of trypanosome

Vps9 domain proteins, either individually or in combination

(Figure 6C). This suggests that bulk membrane endocytosis is unim-

paired, despite apparent localisation to the endosomes for TbRabex5

and probably also TbAlsin from TrypTag data.

We also monitored uptake of Concanavalin A (ConA), a mannose

binding lectin that essentially reports on variant surface glycoprotein

uptake.59 Uptake was unaffected in cells where TbRabex5 or TbAlsin

were depleted by RNAi, but by contrast the double knockdown did

result in a significant reduction in ConA uptake as early as 1 day

post-induction (Figure 6E). Reduced uptake became even clearer on

day 2 and indicates a defect in endocytosis when both of the Vps9

domain proteins of T. brucei were ablated. This also suggests that the

2 Vps9 proteins in T. brucei likely have at least partly redundant

functions.

To further explore this, we analysed the impact on the locations

and expression levels of clathrin, TbRab5A and TbRab21 of knocking

down TbRabex5 and TbAlsin. The loss of a GEF for a Rab results in

decreased Rab activation and the inactive RabGDP tends to lose

membrane localization, resulting in dispersal in the cytosol.9,20 Specif-

ically, Rab5 GEF defects are associated with a reduction in the size of

early endosomes in C. elegans cells.44 Knockdown alone of either

Vps9 protein failed to elicit any change in the endosomal distribution

FIGURE 4 Intracellular localization of epitope tagged TbVps9

proteins in BSF cells. (A) Western blots showing expression and
protein size of TbRabex5 fused to N-terminal FLAG tag or HA tag,
and TbAlsin fused to N-terminal HA tag, along with negative controls.
(B) IFA images showing ectopic expression of FLAG::TbRabex5 and
HA::TbRabex5 and (C) HA::TbAlsin in bloodstream form cells.
(B) Cells were labelled with monoclonal mouse anti-FLAG and
counterstained with anti-mouse Alexa 568 (red). Nuclear and
kinetoplast DNA were visualized using DAPI (blue). FLAG-tagged
TbRabex5 punctate staining localizes between the nucleus and
kinetoplast in a region specific for endosomes. Scale bar: 5 μm. N-
terminal HA tagged TbRabex5 was expressed in BSF cells
independently to control for mistargeting. HA-TbVps9 is localized to
punctate structures between nucleus and kinetoplast similar to
FLAG-tagged protein. (C) TbAlsin was ectopically expressed in BSF
cells with N-terminal HA tag (as in B), and show cytosolic staining.
The lower panel shows BSF 427 cells alone as a negative control to
rule out the possibility of non-specific binding of anti-HA antibody

FIGURE 5 Colocalization of Vps9 domain proteins with known

endosomal markers. BSF cells stably expressing TbRabex5 with
N-terminal HA or FLAG epitopes were co-stained with markers of
T. brucei endomembrane system. Cells were labelled with primary
antibodies against epitope tags protein in addition to (A) TbRab5A,
(B) HA-tagged TbRab21 and (C) clathrin heavy chain. Proteins were
visualized using appropriate Alexa Fluor conjugated secondary
antibodies whereas DNA was visualized using DAPI. All images were
captured at the same magnification. Scale bar: 5 μm
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FIGURE 6 Effect of TbRabex5/Alsin double knockdown on BSF proliferation. (A) Growth curve of TbRabex5/Alsin double knockdown BSF

parasites. SMB cells were transfected with RNAi plasmid p2T7 containing fused fragments of TbRabex5 and TbAlsin. RNAi cells were grown in
the presence (broken lines) or absence (solid lines) of 1 μg/mL tetracycline and counted every 48 hours. Error bars shown are the SE of
duplicate inductions. (B) Depletion of both Vps9 domain proteins results in a mild cytokinesis block. Cells were induced for 3 days, and a sample
of cells fixed daily and stained using DAPI to visualize nuclei and kinetoplasts. At least 200 cells were observed under the microscope to
categorize as 1N1K, 1N2K, 2N2K and cells having >2N or >2K. Cells that deviated from these categories were labelled “others”. (C) Phase and
DAPI images of cells at day 3 of induction. Uninduced (− tet) cell shown as comparison to the variation observed in induced cells. Scale bar:
5 μm. (D) Validation of knockdown by western blot. The double knockdown cell line was transfected separately with N-terminal HA-tagged
TbRabex5 or TbAlsin. Cells expressing tagged proteins were induced for RNAi and lysates were subjected to SDS-PAGE followed by western
blot using anti-HA antibody. Both of the Vps9 domain proteins are shown to be lost specifically after induction. Loading control is shown as BiP
or Ponceau S staining. (E) Concanavalin A uptake upon individual and double Vps9 knockdown. RNAi 1N1K cells were grown in the presence
(broken lines) or absence (solid lines) of tetracycline, for 1 (triangles) and/or 2 days (diamonds), and fluorescein-conjugated ConA uptake was
measured. For each sample, 50 000 cells were counted and median fluorescence of ConA was plotted against time of uptake with error bars
showing SE of median. (E, top) ConA uptake after 2 days of TbRabex5 RNAi induction, (E, middle) ConA uptake after TbAlsin RNAi and (E,
bottom) ConA uptake upon TbRabex5/Alsin double knockdown
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or total protein levels of clathrin heavy chain, TbRab5A or TbRab21

(Figures S3 and S4). By contrast, in a double knockdown, there was

50% reduction (P < .005, n = 40) in the amount of endosome-

associated TbRab5A compared to uninduced cells at 24 hours,

whereas the total amount quantified by western blotting remained

unchanged (Figure 7A,D). We presume that the Rab5A proteins that

lost their membrane localization were not detectable in the cytoplasm

as a result of the IFA staining procedure. Significantly, a rapid loss of

TbRab21 was also observed by western blotting and in this case

TbRab21 reduced to 10% of the uninduced level after 15 hours, and

confirmed by immunofluorescence (Figure 7B,D). We suggest that

these reductions in Rab5A and Rab21 endosomal association explain

the reduced uptake of ConA. By contrast no change in the amount or

subcellular distribution of clathrin was observed (Figure 7C,D), sug-

gesting a very specific effect on early endosome functions and also

consistent with the absence of an enlarged flagellar pocket.

2.11 | Physical interaction between TbVps9
proteins and endocytic Rabs

To search for direct evidence of interactions between trypanosome

Vps9 domain proteins and endocytic Rabs coimmunoprecipitation

experiments were performed. As the Rab GEFs bind only with inac-

tive GDP-bound Rabs, QL mutants of endocytic Rabs (GTP locked,

active Rab mutant) and SN mutants (GDP locked, inactive Rab

mutant) were analysed. TbAlsin and TbRabex5 were coexpressed in

reticulocyte lysates with a cohort of Rabs including TbRab1A,

TbRab5A, TbRab5B, TbRab21 and TbRab28. An interaction between

TbRab5ASN and TbAlsin was detected while the QL mutant failed to

interact as expected. The result was highly reproducible and based on

the number of [35S]-labelled amino acids in each protein ~50% of

TbAlsin bound to TbRab5A (Figure 8).

3 | DISCUSSION

Vps9 domain-containing proteins are central players in endocytosis in

mammalian and yeast cells. While Vps9 proteins had been identified

in a handful of other taxa, the full breadth of their diversity was

unknown. Here we identified Vps9 domain proteins encoded in over

50 genomes and transcriptomes across the eukaryotic tree. Only

3 organisms had no identifiable Vps9 domain-containing protein. The

genomes of these 3 organisms are highly reduced because of adapta-

tion; parasitism for G. intestinalis,60 and extremophilia in the closely

related red algae C. merolae and G. sulphuraria.61 Furthermore, neither

Giardia nor C. merolae possess known orthologues of Rab5 or

Rab21,1,2,62 suggesting a loss of this entire arm of the endocytic path-

way. By contrast, most genomes sampled encode more than 1 Vps9

FIGURE 7 Double knockdown of TbVps9 proteins leads to loss of endosomal localization of both TbRab5A and TbRab21.

(A) Immunofluorescence analysis of TbRab5A in TbVps9 double knockdown cells. Cells were fixed and stained with polyclonal antibodies against
TbRab5A. Alexa Fluor 568-labeled antibodies were used to visualize Rab5A and DNA was counterstained with DAPI. TbRab5A was reduced
significantly from endosomes of induced cells. Scale bar: 5 μm. (B) Analysis of TbRab21 in TbVps9 double knockdown cells. SMB BSF TbVps9
double knockdown cells were transfected with N-terminal YFP-tagged TbRab21. Knockdown cells expressing recombinant YFP-Rab21 were
selected and induced for 15 hours to deplete both of TbVps9 domain proteins. Cells showed a significant reduction in the expression and
endosomal localization of YFP tagged TbRab21 following 15 hours of Vps9 double knockdown. (C) IFA of clathrin in TbVps9 double knockdown

cells. Clathrin location and expression remained unchanged even at a later post-induction time of 48 hours. (D) Following knockdown of both of
TbRabex5 and TbAlsin proteins, expression levels of TbRab5A, YFP-TbRab21 and clathrin heavy chain were quantified. Averages of multiple
inductions (duplicate/triplicate) were normalized to uninduced (100%). Error bars show SE of mean

HERMAN ET AL. 555



domain-containing protein, suggesting similar importance in other

eukaryotes as for human cells. However, there does not appear to be

any correlation with the presence of Rab21 and Rab22 and either

number or type of Vps9 family proteins in eukaryotes. In a study of

the Tre-2/Bub2/Cdc16 (TBC)-domain RabGAPs, it was noted that

the GTPase regulators were found at a lower copy number than Rabs

in a given genome,4 suggesting that the RabGAPs act promiscuously.

This may also be the case for Vps9 proteins, raising the possibility of

interactions with Rabs outside the Rab5 family, and additional roles

in the endocytic system.

There were at least 3 primordial clades of Vps9 domain proteins

in the LECA: Alsin, Varp and Rabex5 + GAPVD1 (Figure 9). The addi-

tional domains present in the human homologues of these proteins

appear to have been acquired later in eukaryotic evolution, as have

the non-animal lineage-specific domain acquisitions (Figure 10). How-

ever, there are 2 major exceptions of domains present in human

Vps9 proteins that are found outside of the Opisthokonta, one being

the MORN repeats found in the excavate and some amoebozoan

Alsin homologues (Figure 10). The second exception is the domain

acquisition in the Rabex + GAPVD1 subfamily. Based on our

phylogenetic analyses, a Rabex + GAPVD1 preduplicate was likely

present in the LECA (Figure 1 and Figure S1). We propose that a

duplication of the Rabex + GAPVD1 sequence occurred at the base

of the Amorphea (Amoebozoa and Opisthokonta), generating the

GAPVD1 subfamily. Furthermore, a RasGAP domain—a defining fea-

ture of the GAPVD1 sequence in animals—is present in holozoan and

amoebozoan representatives. It is also present in the sole GAPVD1

representative of the holomycotan F. alba, prior to the loss of the

protein in the Fungi.

In animal cells, Varp is characterized by a Vps9 domain and 2 sets

of ankyrin repeats with upstream CHPLCxCxxC motifs, and this archi-

tecture is conserved generally in the Holozoa.21 While the cysteine-

rich motif appears to be restricted to the Holozoa, a Varp-like homo-

log with ankyrin repeats was likely present in the ancestor of opistho-

konts, although not in the outgroup taxon T. trahens. In human cells,

the CHPLCxCxxC motif is responsible for recruiting Varp to endo-

somes by interaction with the retromer subunit Vps29,21 suggesting

this interaction is not conserved outside of the Holozoa. Further-

more, work in human cells has shown that the first ankyrin repeat of

Varp binds Rab32, and is involved in melanogenic enzyme

FIGURE 8 TbAlsinVps9 interacts specifically with GDP bound mutant of TbRab5A. (A) in vitro expression of TbVps9 proteins and TbRabs. Vps9

domain proteins are 20% of CoIP input while Rabs are 5%. No plasmid served as a control for reticulocyte lysate background labelling. All the
autoradiographs were exposed for comparable time and rearranged for clarity. (B) Coimmunoprecipitation of TbRabex5 (bait) and a set of
endosomal TbRabs (prey). Equal volumes of in vitro expressed bait and prey proteins were mixed and incubated for binding, following pull down
using anti-HA polyclonal antibodies. Proteins were eluted and separated on SDS-PAGE followed by autoradiography. QL Rabs are GTP-bound
mutants while SN/TN are GDP-bound mutants. Rab1A served as negative control. TbRabex5 full-length protein was not able to bind any of the
mutant Rabs under the conditions of the experiment. (C) Coimmunoprecipitation of TbAlsin (bait) and a set of endosomal TbRabs (prey). Equal
volumes of in vitro expressed bait and prey proteins were incubated for binding and harvested with anti-HA polyclonal antibodies. TbAlsin
interacted with inactive GDP (SN) mutants of TbRab5A but not the QL mutant. Note: Expression of TbAlsin in Rab1A and Rab21 experiments is
poor but was sufficient to pull down TbRab5ASN in a separate experiment. (D) Controls for non-specific bead/antibody binding. in vitro
expressed TbRabs were pulled down using the same quantities of anti-HA polyclonal antibodies and protein A beads as described for panels
B and C
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trafficking.22 Despite the fact that Rab32 is lost from the Fungi, a

putative Rab32 orthologue is present in the basal F. alba

(XP_009497485). Given that the Varp orthologue in Fonticula is the

only holomycotan orthologue to also contain an Ankyrin-repeat, this

suggests that the binding of Rab32 and Varp is conserved from the

opisthokont ancestor onwards but was lost in Fungi.

The human Rabex5 and yeast Vps9, on the other hand, appear to

be members of 2 distinct clades within the Rabex-like proteins

(Figure S1R). There have also been 2 clear duplications of Rabex-like

proteins in the Amoebozoa. The Rabex-like protein in Fungi, which

includes the Vps9p protein of S. cerevisiae, acquired a CUE domain

prior to the divergence of Mortierella. At the base of Holozoa, the

Rabex5-like protein duplicated, and 1 duplicate acquired the

ubiquitin-binding zinc finger domain present in the mammalian

Rabex5 (Figure 10). This acquisition is relatively ancient in the Holo-

zoa, occurring prior to the divergence of the basal filasterian

C. owczarzaki. The other duplicate, however, was maintained until the

base of animals, and appears to have been lost in the ancestor of

Trichoplax adhaerens.

In addition to the zinc finger and CUE domains present in some

animal and fungal representatives, a third independent acquisition of

an ubiquitin-binding domain is in the amoebozoan Sexangularia sp.,

which has a sequence grouping within an Amoebozoa-specific clade

that contains a domain of the ubiquitin associated (UBA) domain-like

superfamily. The tendency for these proteins to gain and conserve

ubiquitin-binding domains suggests the relevance of ubiquitin binding

FIGURE 9 Evolution of the Vps9 protein

family in eukaryotes. Gains are denoted by
green arrows, whereas losses are denoted
by red arrows. Although the fungal Vps9
clade and mammalian Rabex5 clade are
part of a larger Rabex5-like clade, they are
shown here separately, as they have been
studied independently and extensively in
the literature
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FIGURE 10 Evolutionary timeline of
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shown as a collapsed node for simplicity.
While some domains were acquired
recently in mammalian evolution, others
predate supergroup divergence events or
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to Vps9 family protein function.63 In human cells, the zinc finger is

required for recruitment to early endosomes independent of both

Rab5 interaction and GEF activity, which raises the possibility of

whether Rabex + GAPVD1 homologues with other ubiquitin-binding

domains are similarly localized.

We identified a clade of Vps9 DCPs that are patchily conserved

in eukaryotes, finding orthologues in the Fungi, Stramenopile and

Haptophyte clades, suggesting that a Vps9DCP-like orthologue was

present in the LECA. To date, the human orthologue remains func-

tionally unclassified, and contains only a Vps9 domain. However, gen-

erally in the Vps9 family, there are numerous examples of lineage-

specific domain acquisitions; many of which are known to interact

with membrane or cytoskeletal components in human cells, while

others have more diverse functions.

Investigation of the functions of 2 Vps9 proteins in trypano-

somes suggests a broadly conserved role within the Excavata. Specifi-

cally, Vps9 proteins from 2 distinct subfamilies, represented by

TbRabex5 and TbAlsin, both likely localize to endosomes, and data

are consistent with interactions with TbRab5 and TbRab21. Further-

more, knockdown of individual transcripts suggests redundancy, but a

double knockdown impacts the ability of both TbRab5A and TbRab21

to target correctly, consistent with GEF activity, while we were also

able to obtain evidence for a direct interaction between TbAlsin and

TbRab5A.

Based on our observations of Vps9 protein evolution in eukary-

otes, we propose 2 overarching qualities of this family: Vps9 family

proteins serve as scaffold proteins of the endocytic system, and they

can act an evolutionary platform for endocytic specialization. Given

other evidence of interaction between Vps9 domain proteins and

Rab5 homologues in members of the archaeplastids9 and SAR

clades,12 as well as our novel data in excavates, there appears to be a

remarkable level of conservation in terms of control mechanisms for

endosomal systems.

4 | METHODS

4.1 | Comparative genomics and evolutionary
inference

Human orthologues of all Vps9 domain-containing proteins were

used as queries: HsVarp (NP_115515.2), HsRIN2 (NP_061866.1),

HsVps9 (NP_004904.2), HsAlsin (NP_065970.2), HsRabex

(NP_055319.1) and HsGAPVD1 (NP_056450.2). BLASTP64 searches

were performed to search the predicted proteomes of the following

organisms: Gallus gallus, Drosophila melanogaster, Ciona intestinalis,

Strongylocentrotus purpuratus, Monosiga brevicollis and C. owczarzaki.

Proteins were considered orthologous if they retrieved the query

sequence or a clear orthologue as the top hit in the reciprocal BLAST

search, and proteins from both forward and reciprocal searches were

retrieved with an E-value less than 0.05. The domain structure of all

Vps9 domain proteins was determined by searching the conserved

domain database (CDD),65 and similar domain organization of the

candidate proteins to the human orthologue supported the

relationship.

Positively identified Vps9 homologues from holozoan organisms

were used to generate Vps9 protein-specific hidden Markov models,

which were then used to search a diversity of eukaryotes listed in

Table S1. For the following amoebozoan organisms, translated

MMETSP (Marine Microbial Environmental Transcriptome Sequenc-

ing Project)66 transcriptomes were searched, as this group lacks geno-

mic representation: Vannella sp., Paramoeba sp., Neoparamoeba sp.,

Sexangularia sp., Mayorella sp., Filamoeba nolandi and Pessonella sp. To

ensure that we did not bias the HMMer search towards holozoan

organisms, we also used the hidden Markov model generated for

Vps9 available through the Pfam protein families database67 to

search the predicted proteomes. As in Holozoa, the domain structure

of all Vps9 domain-containing proteins was determined by the CDD.

Throughout this work, we use the tripartite classification of

eukaryotes outlined by Adl et al,17 which mainly splits organisms into

the Amorphea (Amoebozoa, Opisthokonta supergroups), Diaphore-

tickes (Stramenopile, Alveolata, Rhizaria clade; Archaeplastida; and

Cryptophyta, Centrohelida, Telonemia and Haptophyta) and the Exca-

vata. Based on our current understanding of the root of

eukaryotes,68,69 if a Vps9 family protein is found in representatives

of the Amorphea and the Excavata sampled in this paper, we can

infer that it was present in the LECA, and lost in the Diaphoretickes.

4.2 | Phylogenetics

Because of the high sequence divergence and relatively short Vps9

domain, initial phylogenetics attempts generated trees with no reso-

lution. We therefore undertook a multi-step approach to sequence

classification. As the human Vps9 family proteins are functionally

characterized, we first generated a tree using well-classified meta-

zoan sequences with strong backbone support. Then, individual Vps9

domain proteins from other supergroups (or subclades) were aligned

to this metazoan backbone alignment, and trees were generated.

Finally, we performed a Scrollsaw-style analysis1 in which the short-

est branching sequences from each clear clade in each tree were

selected for phylogenetic analysis.

For the initial metazoa backbone tree, all identified metazoa

Vps9 domain-containing proteins were aligned using MUSCLE

v3.8.31,70 with extensive manual realignment using the alignment

visualization program Mesquite v3.03.71 For all other trees, Vps9

sequences from each group were iteratively aligned to the metazoan

alignment using the profile option in MUSCLE. Non-homologous

positions were manually masked and trimmed. Masked alignments

are available upon request. Model-testing was performed using Prot-

Test v3.472 to identify the most accurate model of sequence evolu-

tion. The model parameters for each tree are available in Table S1.

Phylobayes v4.173–75 and MrBAYES v3.2.276 programs were run

for Bayesian analysis and RAxML v8.1.377 was run for maximum-

likelihood analysis. Phylobayes was run until the largest discrepancy

observed across all bipartitions was less than 0.1 and at least

100 sampling points were achieved, MrBAYES was used to search

treespace for a minimum of 1 million Markov chain Monte Carlo

(MCMC) generations, sampling every 1000 generations, until the

average SD of the split frequencies of 2 independent runs (with

2 chains each) was less than 0.01. Consensus trees were generated
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using a burn-in value of 25%, well above the likelihood plateau in

each case. RAxML was run with 100 pseudoreplicates.

For the final scrollsaw tree, the shortest branching sequences for

each clade in the MrBAYES trees were selected. In cases where mul-

tiple trees were generated for each supergroup, we compared branch

lengths relative to the length of the human sequence HsRIN2 to the

base of the RIN clade, as the RIN clade is restricted to the metazoa

and therefore the branch length of this sequence within this clade

should remain relatively constant between trees. We then iteratively

aligned these sequences to the metazoan alignment as described

above, and then removed all extraneous metazoan sequences for this

final tree. Trees were then run as described above. For all trees, long-

branching sequences were removed to improve resolution.

A separate set of trypanosome-specific classification trees were

generated, as the excavate phylogenies were poorly resolved. In

these trees, only the 2 T. brucei and T. cruzi Vps9 sequences were

aligned to the metazoa alignment. Otherwise, trees were generated

as described above.

4.3 | Culturing of bloodstream and procyclic forms
of T. brucei

T. brucei blood stream form cells (Lister 427) were cultured in HMI-9

complete medium with 10% tetracycline free heat inactivated foetal

bovine serum (FBS), 100 U/mL penicillin, 100 U/mL streptomycin

and 2 mM L-glutamine at 37�C with 5% CO2 in non-adherent culture

flasks, with vented caps.78 For RNAi experiments single marker

bloodstream (SMB) cells expressing T7 RNA polymerase79 were cul-

tured under the same conditions in the continuous presence of 5 μg/

mL neomycin and expression of double-stranded RNA was induced

by the addition of tetracycline at 1 μg/mL. All BSF cell lines were

maintained below a culture density of 2 × 106 cells/mL. To deter-

mine cell density, 100 μL aliquots were withdrawn from cultures and

diluted with 10 mL isoton II (Beckman Coulter), cell number was

determined with a Z2 Coulter Counter (Beckman Coulter), averaging

3 measurements. A hemocytometer was also used for counting cells.

Procyclic form cells were cultured in SDM79 media supplemented

with 10% FBS, penicillin, streptomycin, L-glutamine and haemin.80

Cells were cultured in non-vented flasks at 27�C and maintained

between 1 × 105 and 2 × 107 cells/mL.

4.4 | Quantitative real-time polymerase chain
reaction

First strand cDNA was synthesized using SuperScript III reverse tran-

scriptase (Invitrogen) following the manufacturer's instructions. Two

microgram of total RNA was made up to 11 μL with nuclease-free

water, 1 μL of 50 μM oligo (dT)18 and 1 μL of 10 mM dNTPs. The

mixture was heated to 65�C for 5 minutes and incubated on ice for

at least 1 minute. To this denatured RNA mixture 4 μL of ×5 first

strand buffer (250 mM Tris-HCl, pH 8.3 at room temperature,

375 mM KCl, 15 mM MgCl2) 1 μL of 0.1 M DTT, 1 μL RNaseOUT

(recombinant RNase inhibitor, Invitrogen) and 1 μL of SuperScript III

reverse transcriptase added before incubating at 50�C for 60 minutes

to synthesize cDNA. The reaction was inactivated by heating at 70�C

for 15 minutes. cDNA was diluted with Milli-Q water and used as a

template for amplification. Quantitative real-time polymerase chain

reaction (qRT-PCR) was performed using BioRad's iQTM SYBR Green

Supermix, following the manufacturer's instructions. Briefly, 12.5 μL

of ×2 iQTM SYBR Green Supermix (×2 reaction buffer with dNTPs,

iTaq DNA polymerase, 6 mM MgCl2, SYBR Green I, fluorescein and

stabilizers), 0.4 μM of forward and reverse primers and cDNA equiva-

lent to 50 to 100 ng total RNA (depending on the expression level of

the genes under investigation) was mixed and the final volume made

up to 25 μL with nuclease-free water. Replicate samples were assem-

bled as a master mix with a single addition of different templates.

The reaction mix was transferred into multiplate PCR plates and set

on a MiniOpticon real-time PCR system, both from Bio-Rad. Amplifi-

cation profile was: initial denaturation at 95�C for 3 minutes followed

by 40 cycles at 95�C for 30 seconds, 58�C for 30 seconds and 72�C

for 30 seconds. Finally, a melting curve from 60 to 95�C was

obtained to ascertain the specificity of the PCR amplification. The

normalized expression (ΔΔCt) of mRNA was subsequently deter-

mined (based on one or multiple reference genes) using Bio-Rad CFX

manager software.

4.5 | RNAi constructs and transfections

RNAi constructs were made by cloning 400 to 600 bp fragments,

selected using RNAit81 into Eam 11051 (Fermentas) linearized p2T7-

TAblue vector. This tetracycline inducible T7 RNAi expression vector

was a derivative of p2T782 with blue white screening capability. For

ectopic expression pHD103483 or pXS555 were used. Both have

rRNA promoters and were used to clone genes of interest either in

frame to an N-terminal YFP, HA or FLAG epitope tags. pHD1034

was used for overexpression in both life forms where pXS5 was spe-

cific for BSF.

4.6 | Plasmid construction and transfection

pGBKT7 and pGADT7 vectors (Matchmaker system, Clontech Labora-

tories, Inc.) were used to express T. brucei Rabs and Vps9 proteins

in vitro, using their T7 promoters. Mutant Rab (QL GTP locked, active

Rab mutant and SN GDP locked, inactive Rab mutant) pGBKT7 con-

structs were a kind gift from Carme Garbernet-Castello, while

TbRab21 was cloned into pGBKT7 downstream of the c-Myc epitope

tag using appropriate restriction sites from the multiple cloning sites

(MCS) and subsequently mutated using the In-Fusion Advantage PCR

cloning kit into inactive Rab21TN mutant. E. coli were transformed and

positive clones were selected using 50 μg/mL kanamycin. T. brucei

GEFs (TbRabex5 Tb927.10.10020 and TbAlsin Tb927.3.2430) were

cloned in pGADT7-AD vector. Appropriate restriction sites from MCS

were used for in-frame cloning of trypanosome GEFs with respect to

the HA epitope tag. Positive clones were selected using 100 μg/mL

ampicillin and all constructs were sequenced prior to further use.

T. brucei bloodstream form cells were transfected with 10 μg lin-

earized plasmids. An Amaxa Nucleofector device was used for trans-

fection together with the Amaxa Human T-cell nucleofector kit,

following manufacturer's instructions with few modifications. About

30 to 50 million mid-log phase BSF cells were harvested per
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transfection and resuspended in 100 μL of nucleofector solution pro-

vided in the kit and mixed with 10 μg linearized plasmid (dissolved in

5-10 μL of sterile water). Transfection was performed in Amaxa

cuvettes using program X-001 (optimized electrical parameters).

Transfected cell were serially diluted and after ~6 hours of posttrans-

fection incubation, 1 mL aliquots were transferred to 24 well plates

where the cells were selected for 5 to 6 days using antibiotics (BSF;

neomycin G418: 2.5 μg/mL, hygromycin: 2.5 μg/mL, puromycin:

0.2 μg/mL, phleomycin: 1 μg/mL). Clones were picked from appropri-

ately diluted plates and maintained under continuous drug pressure.

To transfect PCF, exponentially growing cells were harvested

and washed once with cytomix (2 mM EGTA, 120 mM KCl, 0.15 mM

CaCl2, 10 mM KPO4, 25 mM HEPES, 5 mM MgCl2, 0.5% glucose,

100 μg/mL BSA, 1 mM hypoxanthine, pH 7.6) before resuspending

2 x 106 cells in 500 μL of cold cytomix. Linearized plasmid DNA of

25 μg was added to the cells, mixed well and transferred to a cuvette

for electroporation using a Bio-Rad gene pulser set at 1.5 kV and a

capacitance of 25 μF. Transfected cells were allowed to recover for

8 hours in 10 mL 20% FBS media before the addition of selective

antibiotic (puromycin 1.5 μg/mL for pHD1034 vector). Cells were

serially diluted and 150 μL aliquots plated into 96 well plates and

grown for 2 weeks at 27�C. Clones were picked and expanded into

larger volumes, maintaining above the minimum culture density. Sta-

ble transgenic lines (BSF and PCF) were frozen in appropriate growth

media containing 10% glycerol and slowly cooled to −80�C using

paper towel padding. Frozen cell vials were subsequently transferred

to liquid nitrogen for long-term storage.

4.7 | Western blotting

For lysate preparation, cells were harvested by centrifugation at 800g

for 10 minutes at 4�C, washed in PBS and resuspended in SDS sam-

ple buffer at a concentration of 0.5 × 106 cell equivalents per microli-

ter before heating at 95�C for 10 minutes. Samples were

electrophoresed on 10% SDS-PAGE minigels gels at 5 × 106 cell

equivalents per lane and then transferred to Immobilon PVDF mem-

brane (Millipore) by wet blot using transfer buffer (192 mM glycine,

25 mM Tris and 20% v/v methanol). Ponceau S staining was per-

formed to monitor loading, by shaking membranes in Ponceau S solu-

tion (0.1% Ponceau S w/v in 5% v/v acetic acid, Sigma) for 5 minutes

and washing the excess stain with Milli-Q water. Membranes were

blocked for 1 hour at room temperature in blocking solution of 5%

dried skimmed milk in TBST (24.8 mM Tris pH 7.4, 137 mM NaCl,

2.7 mM KCl, 0.2% Tween-20). After blocking membranes were incu-

bated from 1 hour at room temperature to over night at 4�C with pri-

mary antibody in blocking solution of 1% to 3% milk. Excess

antibodies were washed by shaking membranes thrice for 5 minutes

each in TBST before incubating for 1 hour with peroxidase goat anti-

rabbit conjugate or peroxidase rabbit anti-mouse conjugate (second-

ary antibodies were from Sigma and used at a dilution of 1:10 000 to

1:20 000). Blots were washed again and bound antibodies were

detected by reaction with luminol and visualized by exposure to

Kodak chemiluminescence film or using G:BOX chemiluminescence

imaging system from Syngene. For re-probing where needed, mem-

branes were stripped using Restore western blot stripping buffer

(Thermo Scientific) following the manufacturer's instructions and pro-

cessed for western blot.

4.8 | Immunoprecipitation

To study the physical interaction between endocytic TbRabs and

TbVps9 proteins, 35S-Met-labeled proteins were made by in vitro

transcription and translation using Promega's TNT T7 coupled reticu-

locyte lysate system according to the manufacturer's instructions.

Briefly, 1.5 μg purified plasmid (pGBKT7/pGADT7 constructs) was

mixed with 40 μL of TNT master mix and 20 μCi of [35S] methionine.

Nuclease-free water was added to make the volume up to 50 μL.

Recommended grade of 35S methionine (PerkinElmer EasyTag Methi-

onine L-[35S] specific activity 1000 Ci/mmol Cat No. NEG709A) was

used to avoid background labelling of rabbit reticulocyte lysate. The

reaction was incubated at 30�C for 90 minutes or 22�C in case of the

larger TbAlsin protein. In vitro translation reactions were analysed by

heat denaturing a small aliquot of translation reaction in SDS sample

buffer and separating on SDS-PAGE gels. Western blotting or autora-

diography was used to detect in vitro translated proteins. Western

blots were done using anti-HA and/or anti-c-Myc antibodies. For

autoradiography gels were agitated with fixing solution (50% metha-

nol, 10% glacial acetic acid and 40% water v/v) for 45 minutes and

with 10% glycerol for 5 minutes before drying at 80�C for 2 hours

using a gel dryer. The dried gels were exposed on Kodak BioMax MR

scientific imaging film for several days.

For coimmunoprecipitation, 10 μL of in vitro translated TbRabs

and 10 μL TbVps9 proteins were mixed in different combinations and

incubated for 1 hour at room temperature. Anti-HA polyclonal anti-

body of 10 μL (Santa Cruz Biotechnology, Inc) was added to the pro-

tein mix and incubated for 1 hour at room temperature. About 3 μL

of PBS washed protein A beads were added and reaction tubes were

rotated for 1 hour at room temperature to capture the immune com-

plexes. Tubes were centrifuged at 7000 rpm for 10 seconds and the

supernatant was discarded before washing the beads 7 times with

wash buffer (50 mM Tris, pH 7.5, 150 mM NaCl, 10 mM EDTA, 0.1%

Triton X-100, 10 mM MgCl2, Protease inhibitor; Roche complete

1 tab/50 mL). To elute and denature bound proteins, beads were

heated with 20 μL SDS sample buffer at 80�C for 5 minutes, samples

loaded onto SDS-PAGE minigel and after electrophoresis autoradiog-

raphy was performed as above.

4.9 | Immunofluorescence microscopy

For immunofluorescence microscopy BSF or PCF cells were har-

vested by centrifugation at 800g for 10 minutes at 4�C. Pelleted cells

were gently washed with ice cold Voorheis' modified PBS (vPBS;

136 mM NaCl, 3 mM KCl, 16 mM Na2HPO4, 3 mM KH2PO4, 40 mM

sucrose, 10 mM glucose, pH 7.6)84 and fixed for 10 minutes for BSF

or 60 minutes for PCF on ice in 3% formaldehyde. Excess fixative

was washed with vPBS and fixed cells were adhered to polylysine-

coated slides (PolysineTM VWR International) sectioned with

ImmEdge Pen (Vector Laboratories) for 20 minutes at room tempera-

ture. For permeabilization cells were incubated with 0.1% Triton X-

100 in PBS for 10 minutes, subsequently washed 3 times for
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5 minutes each with PBS. Cells were blocked for 1 hour at room tem-

perature in 20% FBS in PBS and incubated with primary antibodies

diluted in 20% FBS. Unbound primary antibodies were washed off

with PBS 3 times, 5 minutes prior to incubation with secondary anti-

bodies: Oregon green 488 conjugate anti-mouse, Alexa Fluor

488 anti-rabbit, Alexa Fluor 568 anti-mouse and Alexa Fluor

568 anti-rabbit, for 1 hour at room temperature. All secondary anti-

bodies were from Invitrogen and used at a 1:1000 dilution. Following

incubation, cells were washed as before. Cells were air dried and cov-

erslips mounted using Vectashield (Vector Laboratories, Inc) mounting

medium with 40 ,6-diamidino-2-phenylindole (DAPI). Coverslips were

sealed with nail varnish before observing under a Nikon ECLIPSE

E600 epifluorescence microscope. Images were captured using a

Hamamatsu ORCA charge coupled device camera. Digital images

were analysed and false coloured using MetaMorph 6.0 software

(Universal Imaging Corporation) and figures assembled from raw

images using Adobe Photoshop CS3 (Adobe Systems).

4.10 | Endocytosis assay

Log phase cells (5 × 107) were harvested by centrifugation at 800g

for 10 minutes at 4�C. Cells were wash once with 10 mL of serum-

free HMI-9 1% BSA and resuspended gently in 5 mL serum-free

HMI-9 1% BSA and incubated at 37�C for 30 minutes to serum

starve. Fluorescein-conjugated Concanavalin A or Alexa Fluor 633-

conjugated human transferrin was added to a final concentration of

10 and 125 μg/mL, respectively. Cells were incubated at 37�C for dif-

ferent periods of time, followed by the addition of ice-cold vPBS to

stop uptake. Cells were pelleted, fixed and mounted as for IFA or

processed for flow cytometry.

ACKNOWLEDGMENTS

This work was supported by a Vanier Canada Graduate Scholarship

to E.H.; a Discovery Grant from the Natural Sciences and Engineering

Research Council of Canada (RES0021028 to J.B.D.); and the Well-

come Trust (204697/Z/16/Z to M.C.F.). J.B.D. is the Canada

Research Chair (Tier II) in Evolutionary Cell Biology. E.K.H. and

J.B.D. wish to thank D. Owen and P. Luzio for pointing out the excit-

ing question of Vps9 evolution and helpful discussion throughout.

EDITORIAL PROCESS FILE

The Editorial Process File is available in the online version of this

article.

ORCID

Emily K. Herman http://orcid.org/0000-0002-5327-0755

Mark C. Field http://orcid.org/0000-0002-4866-2885

REFERENCES

1. Elias M, Brighouse A, Gabernet-Castello C, Field MC, Dacks JB.

Sculpting the endomembrane system in deep time: high resolution

phylogenetics of Rab GTPases. J Cell Sci. 2012;125:2500-2508.
https://doi.org/10.1242/jcs.101378.

2. Diekmann Y, Seixas E, Gouw M, Tavares-Cadete F, Seabra MC,
Pereira-Leal JB. Thousands of Rab GTPases for the cell biologist. PLoS
Comput Biol. 2011;7(10):e1002217. https://doi.org/10.1371/journal.
pcbi.1002217.

3. Klinger CM, Ramirez-Macias I, Herman EK, Turkewitz AP, Field MC,
Dacks JB. Resolving the homology—function relationship through
comparative genomics of membrane-trafficking machinery and para-
site cell biology. Mol Biochem Parasitol. 2016;209:88-103.

4. Gabernet-Castello C, Reilly AO, Dacks JB, Field MC. Evolution of
Tre-2/Bub2/Cdc16 (TBC) Rab GTPase-activating proteins. Mol Biol
Cell. 2013;24(10):1574-1583. https://doi.org/10.1091/mbc.E12-07
-0557.

5. Zerial M, McBride H. Rab proteins as membrane organizers. Nat Rev
Mol Cell Biol. 2001;2(2):107-117. https://doi.org/10.1038/35052055.

6. Delprato A, Merithew E, Lambright DG. Structure, exchange determi-
nants, and family-wide Rab specificity of the tandem helical bundle
and Vps9 domains of Rabex-5. Cell. 2004;118(5):607-617. https://
doi.org/10.1016/j.cell.2004.08.009.

7. Delprato A, Lambright DG. Structural basis for Rab GTPase activation
by VPS9 domain exchange factors. Nat Struct Mol Biol. 2007;14(5):
406-412. https://doi.org/10.1038/nsmb1232.

8. Uejima T, Ihara K, Goh T, et al. GDP-bound and nucleotide-free inter-
mediates of the guanine nucleotide exchange in the Rab5�Vps9 sys-
tem. J Biol Chem. 2010;285(47):36689-36697. https://doi.org/10.
1074/jbc.M110.152132.

9. Goh T, Uchida W, Arakawa S, et al. VPS9a, the common activator for
two distinct types of Rab5 GTPases, is essential for the development
of Arabidopsis thaliana. Plant Cell. 2007;19(11):3504-3515. https://
doi.org/10.1105/tpc.107.053876.

10. Field MC, O'Reilly AJ. How complex is GTPase signaling in trypano-
somes? Trends Parasitol. 2008;24(6):253-257. https://doi.org/10.
1016/j.pt.2008.03.005.

11. Khurana T, JA B, Kimmel AR. A Rab21/LIM-only/CH-LIM complex
regulates phagocytosis via both activating and inhibitory mechanisms.
EMBO J. 2005;24(13):2254-2264. https://doi.org/10.1038/sj.emboj.
7600716.

12. Sakura T, Sindikubwabo F, Oesterlin LK, et al. A critical role for toxo-
plasma gondii vacuolar protein sorting VPS9 in secretory organelle
biogenesis and host infection. Sci Rep. 2016;6:38842. https://doi.
org/10.1038/srep38842.

13. Schlacht A, Herman EK, Klute MJ, Field MC, Dacks JB. Missing pieces
of an ancient puzzle: evolution of the eukaryotic membrane-trafficking
system. Cold Spring Harb Perspect Biol. 2014;6(10):1-14. https://doi.
org/10.1101/cshperspect.a016048.

14. Brighouse A, Dacks JB, Field MC. Rab protein evolution and the his-
tory of the eukaryotic endomembrane system. Cell Mol Life Sci. 2010;
67(20):3449-3465. https://doi.org/10.1007/s00018-010-0436-1.

15. Dacks JB, Poon PP, Field MC. Phylogeny of endocytic components
yields insight into the process of nonendosymbiotic organelle evolu-
tion. Proc Natl Acad Sci U S A. 2008;105(2):588-593. https://doi.
org/10.1073/pnas.0707318105.

16. Carney DS, Davies BA, Horazdovsky BF. Vps9 domain-containing
proteins: activators of Rab5 GTPases from yeast to neurons. Trends
Cell Biol. 2006;16(1):27-35. https://doi.org/10.1016/j.tcb.2005.
11.001.

17. Adl SM, Simpson AGB, Lane CE, et al. The revised classification of
eukaryotes. J Eukaryot Microbiol. 2012;59(5):429-493. https://doi.
org/10.1111/j.1550-7408.2012.00644.x.

18. Burki F, Okamoto N, Pombert J-F, Keeling PJ. The evolutionary his-
tory of haptophytes and cryptophytes: phylogenomic evidence for
separate origins. Proc R Soc B. 2012;279(1736):2246-2254. https://
doi.org/10.1098/rspb.2011.2301.

19. Burki F. The eukaryotic tree of life from a global phylogenomic per-
spective. Cold Spring Harb Perspect Biol. 2014;6(5):a016147. https://
doi.org/10.1101/cshperspect.a016147.

20. Zhang X, He X, Fu X-Y, Chang Z. Varp is a Rab21 guanine nucleotide
exchange factor and regulates endosome dynamics. J Cell Sci. 2006;
119(pt 6):1053-1062. https://doi.org/10.1242/jcs.02810.

HERMAN ET AL. 561

http://orcid.org/0000-0002-5327-0755
http://orcid.org/0000-0002-5327-0755
http://orcid.org/0000-0002-4866-2885
http://orcid.org/0000-0002-4866-2885
https://doi.org/10.1242/jcs.101378
https://doi.org/10.1371/journal.pcbi.1002217
https://doi.org/10.1371/journal.pcbi.1002217
https://doi.org/10.1091/mbc.E12-07-0557
https://doi.org/10.1091/mbc.E12-07-0557
https://doi.org/10.1038/35052055
https://doi.org/10.1016/j.cell.2004.08.009
https://doi.org/10.1016/j.cell.2004.08.009
https://doi.org/10.1038/nsmb1232
https://doi.org/10.1074/jbc.M110.152132
https://doi.org/10.1074/jbc.M110.152132
https://doi.org/10.1105/tpc.107.053876
https://doi.org/10.1105/tpc.107.053876
https://doi.org/10.1016/j.pt.2008.03.005
https://doi.org/10.1016/j.pt.2008.03.005
https://doi.org/10.1038/sj.emboj.7600716
https://doi.org/10.1038/sj.emboj.7600716
https://doi.org/10.1038/srep38842
https://doi.org/10.1038/srep38842
https://doi.org/10.1101/cshperspect.a016048
https://doi.org/10.1101/cshperspect.a016048
https://doi.org/10.1007/s00018-010-0436-1
https://doi.org/10.1073/pnas.0707318105
https://doi.org/10.1073/pnas.0707318105
https://doi.org/10.1016/j.tcb.2005.11.001
https://doi.org/10.1016/j.tcb.2005.11.001
https://doi.org/10.1111/j.1550-7408.2012.00644.x
https://doi.org/10.1111/j.1550-7408.2012.00644.x
https://doi.org/10.1098/rspb.2011.2301
https://doi.org/10.1098/rspb.2011.2301
https://doi.org/10.1101/cshperspect.a016147
https://doi.org/10.1101/cshperspect.a016147
https://doi.org/10.1242/jcs.02810


21. Hesketh G, Pérez-Dorado I, Jackson LP, et al. VARP is recruited on to
endosomes by direct interaction with retromer, where together they
function in export to the cell surface. Dev Cell. 2014;29(5):591-606.
https://doi.org/10.1016/j.devcel.2014.04.010.

22. Tamura K, Ohbayashi N, Maruta Y, Kanno E, Itoh T, Fukuda M. Varp
is a novel Rab32/38-binding protein that regulates Tyrp1 trafficking
in melanocytes. Mol Biol Cell. 2009;20:2900-2908. https://doi.org/10.
1091/mbc.E08.

23. Hirota Y, Tanaka Y. A small GTPase, human Rab32, is required for the
formation of autophagic vacuoles under basal conditions. Cell Mol Life
Sci. 2009;66(17):2913-2932. https://doi.org/10.1007/s00018-009
-0080-9.

24. Bultema JJ, Di Pietro SM. Cell type-specific Rab32 and Rab38 coop-
erate with the ubiquitous lysosome biogenesis machinery to synthe-
size specialized lysosome-related organelles. Small GTPases. 2013;
4(1):16-21. https://doi.org/10.4161/sgtp.22349.

25. Dennis MK, Delevoye C, Acosta-Ruiz A, et al. BLOC-1 and BLOC-3
regulate VAMP7 cycling to and from melanosomes via distinct tubular
transport carriers. J Cell Biol. 2016;214(3):293-308. https://doi.
org/10.1083/jcb.201605090.

26. Bean BDM, Davey M, Snider J, et al. Rab5-family guanine nucleotide
exchange factors bind retromer and promote its recruitment to endo-
somes. Mol Biol Cell. 2015;26(6):1119-1128. https://doi.org/10.1091/
mbc.E14-08-1281.

27. Otomo A, Hadano S, Okada T, et al. ALS2, a novel guanine nucleotide
exchange factor for the small GTPase Rab5, is implicated in endoso-
mal dynamics. Hum Mol Genet. 2003;12(14):1671-1687. https://doi.
org/10.1093/hmg/ddg184.

28. Topp JD, Gray NW, Gerard RD, Horazdovsky BF. Alsin is a Rab5 and
Rac1 guanine nucleotide exchange factor. J Biol Chem. 2004;279(23):
24612-24623. https://doi.org/10.1074/jbc.M313504200.

29. Hadano S, Hand CK, Osuga H, et al. A gene encoding a putative
GTPase regulator is mutated in familial amyotrophic lateral sclerosis
2. Nat Genet. 2001;29:166-173. https://doi.org/10.1038/ng100
1-166.

30. Yang Y, Hentati A, Deng H, et al. The gene encoding alsin, a protein
with three guanine-nucleotide exchange factor domains, is mutated
in a form of recessive amyotrophic lateral sclerosis. Nat Genet. 2001;
29(2):160-165. https://doi.org/10.1038/ng1001-160.

31. Eymard-Pierre E, Lesca G, Dollet S, et al. Infantile-onset ascending
hereditary spastic paralysis is associated with mutations in the Alsin
gene. Am J Hum Genet. 2002;71:518-527. https://doi.org/10.1086/3
42359.

32. Kunita R, Otomo A, Mizumura H, Suzuki-Utsunomiya K, Hadano S,
Ikeda JE. The Rab5 activator ALS2/alsin acts as a novel Rac1 effector
through Rac1-activated endocytosis. J Biol Chem. 2007;282(22):
16599-16611. https://doi.org/10.1074/jbc.M610682200.

33. Takeshima H, Komazaki S, Nishi M, Iino M, Kangawa K. Junctophilins:
a novel family of junctional membrane complex proteins. Mol Cell.
2000;6(1):11-22. https://doi.org/10.1016/S1097-2765(05)00005-5.

34. Raymond CK, Howald-Stevenson I, Vater CA, Stevens TH. Morpho-
logical classification of the yeast vacuolar protein sorting mutants:
evidence for a prevacuolar compartment in class E vps mutants. Mol
Biol Cell. 1992;3(12):1389-1402. https://doi.org/10.1091/mbc.
E12-03-0184.

35. Davies BA, Topp JD, Sfeir AJ, et al. Vps9p CUE domain ubiquitin
binding is required for efficient endocytic protein traffic. J Biol Chem.
2003;278(22):19826-19833. https://doi.org/10.1074/jbc.M30105
9200.

36. Lee S, Tsai YC, Mattera R, et al. Structural basis for ubiquitin recogni-
tion and autoubiquitination by Rabex-5. Nat Struct Mol Biol. 2006;
13(3):264-271. https://doi.org/10.1038/nsmb1064.

37. Penengo L, Mapelli M, Murachelli AG, et al. Crystal structure of the
ubiquitin binding domains of Rabex-5 reveals two modes of interac-
tion with ubiquitin. Cell. 2006;124(6):1183-1195. https://doi.org/10.
1016/j.cell.2006.02.020.

38. Mattera R, Yien CT, Weissman AM, Bonifacino JS. The Rab5 guanine
nucleotide exchange factor Rabex-5 binds ubiquitin (Ub) and func-
tions as a Ub ligase through an atypical Ub-interacting motif and a
zinc finger domain. J Biol Chem. 2006;281(10):6874-6883. https://
doi.org/10.1074/jbc.M509939200.

39. Shideler T, Nickerson DP, Merz AJ, Odorizzi G. Ubiquitin binding by
the CUE domain promotes endosomal localization of the Rab5 GEF
Vps9. Mol Biol Cell. 2015;26(7):1345-1356. https://doi.org/10.1091/
mbc.E14-06-1156.

40. Horiuchi H, Lippé R, McBride HM, et al. A novel Rab5 GDP/GTP
exchange factor complexed to Rabaptin-5 links nucleotide exchange
to effector recruitment and function. Cell. 1997;90(6):1149-1159.
https://doi.org/10.1016/S0092-8674(00)80380-3.

41. Yoshimura SI, Gerondopoulos A, Linford A, Rigden DJ, Barr FA.
Family-wide characterization of the DENN domain Rab GDP-GTP
exchange factors. J Cell Biol. 2010;191(2):367-381. https://doi.
org/10.1083/jcb.201008051.

42. Mori Y, Matsui T, Fukuda M. Rabex-5 protein regulates dendritic
localization of small GTPase Rab17 and neurite morphogenesis in hip-
pocampal neurons. J Biol Chem. 2013;288(14):9835-9847. https://
doi.org/10.1074/jbc.M112.427591.

43. Hunker CM, Giambini H, Galvis A, et al. Rin1 regulates insulin recep-
tor signal transduction pathways. Exp Cell Res. 2006;312(7):
1106-1118. https://doi.org/10.1016/j.yexcr.2005.12.021.

44. Sato M, Sato K, Fonarev P, Huang C-J, Liou W, Grant BD. Caenorhabdi-
tis elegans RME-6 is a novel regulator of RAB-5 at the clathrin-coated
pit. Nat Cell Biol. 2005;7(6):559-569. https://doi.org/10.1038/ncb1261.

45. Hu H, Bliss JM, Wang Y, Colicelli J. RIN1 is an ABL tyrosine kinase
activator and a regulator of epithelial-cell adhesion and migration.
Curr Biol. 2005;15(9):815-823. https://doi.org/10.1016/j.cub.2005.
03.049.

46. Doi M, Minematsu H, Kubota Y, Nishiwaki K, Miyamoto M. The novel
Rac effector RIN-1 regulates neuronal cell migration and axon path-
finding in C. elegans. Development. 2013;140(16):3435-3444. https://
doi.org/10.1242/dev.089722.

47. Sandri C, Caccavari F, Valdembri D, et al. The R-Ras/RIN2/Rab5 com-
plex controls endothelial cell adhesion and morphogenesis via active
integrin endocytosis and Rac signaling. Cell Res. 2012;22(10):
1479-1501. https://doi.org/10.1038/cr.2012.110.

48. Kajiho H, Saito K, Tsujita K, et al. RIN3: a novel Rab5 GEF interacting
with amphiphysin II involved in the early endocytic pathway. J Cell
Sci. 2003;116(pt 20):4159-4168. https://doi.org/10.1242/jcs.00718.

49. Tall GG, Barbieri MA, Stahl PD, Horazdovsky BF. Ras-activated endo-
cytosis is mediated by the Rab5 guanine nucleotide exchange activity
of RIN1. Dev Cell. 2001;1(1):73-82. https://doi.org/10.1016/
S1534-5807(01)00008-9.

50. Siegel TN, Hekstra DR, Wang X, Dewell S, Cross GAM. Genome-wide
analysis of mRNA abundance in two life-cycle stages of Trypanosoma
brucei and identification of splicing and polyadenylation sites. Nucleic
Acids Res. 2010;38(15):4946-4957. https://doi.org/10.1093/nar/
gkq237.

51. Koumandou VL, Natesan SKA, Sergeenko T, Field MC. The trypano-
some transcriptome is remodelled during differentiation but displays
limited responsiveness within life stages. BMC Genomics. 2008;28:
1-28. https://doi.org/10.1186/1471-2164-9-298.

52. Zhu H, Zhu G, Liu J, Liang Z, Zhang XC, Li G. Rabaptin-5-independent
membrane targeting and Rab5 activation by Rabex-5 in the cell. Mol
Biol Cell. 2007;18:4119-4128. https://doi.org/10.1091/mbc.E07.

53. Suzuki-Utsunomiya K, Hadano S, Otomo A, Kunita R. ALS2CL, a novel
ALS2-interactor, modulates ALS2-mediated endosome dynamics. Bio-
chem Biophys Res Commun. 2007;354:491-497. https://doi.org/10.
1016/j.bbrc.2006.12.229.

54. Hadano S, Otomo A, Suzuki-Utsunomiya K, Kunita R. ALS2CL, the
novel protein highly homologous to the carboxy-terminal half of
ALS2, binds to Rab5 and modulates endosome dynamics. FEBS Lett.
2004;575:64-70. https://doi.org/10.1016/j.febslet.2004.07.092.

55. Pal A, Hall BS, Nesbeth DN, Field HI, Field MC. Differential endocytic
functions of Trypanosoma brucei Rab5 isoforms reveal a
glycosylphosphatidylinositol-specific endosomal pathway. J Biol Chem.
2002;277(11):9529-9539. https://doi.org/10.1074/jbc.M110055200.

56. Overath P, Engstler M. Endocytosis, membrane recycling and sorting
of GPI-anchored proteins: Trypanosoma brucei as a model system. Mol
Microbiol. 2004;53:735-744. https://doi.org/10.1111/j.1365-2958.
2004.04224.x.

57. Grünfelder CG, Engstler M, Weise F, et al. Endocytosis of a
glycosylphosphatidylinositol-anchored protein via clathrin-coated

562 HERMAN ET AL.

https://doi.org/10.1016/j.devcel.2014.04.010
https://doi.org/10.1091/mbc.E08
https://doi.org/10.1091/mbc.E08
https://doi.org/10.1007/s00018-009-0080-9
https://doi.org/10.1007/s00018-009-0080-9
https://doi.org/10.4161/sgtp.22349
https://doi.org/10.1083/jcb.201605090
https://doi.org/10.1083/jcb.201605090
https://doi.org/10.1091/mbc.E14-08-1281
https://doi.org/10.1091/mbc.E14-08-1281
https://doi.org/10.1093/hmg/ddg184
https://doi.org/10.1093/hmg/ddg184
https://doi.org/10.1074/jbc.M313504200
https://doi.org/10.1038/ng1001-166
https://doi.org/10.1038/ng1001-166
https://doi.org/10.1038/ng1001-160
https://doi.org/10.1086/342359
https://doi.org/10.1086/342359
https://doi.org/10.1074/jbc.M610682200
https://doi.org/10.1016/S1097-2765(05)00005-5
https://doi.org/10.1091/mbc.E12-03-0184
https://doi.org/10.1091/mbc.E12-03-0184
https://doi.org/10.1074/jbc.M301059200
https://doi.org/10.1074/jbc.M301059200
https://doi.org/10.1038/nsmb1064
https://doi.org/10.1016/j.cell.2006.02.020
https://doi.org/10.1016/j.cell.2006.02.020
https://doi.org/10.1074/jbc.M509939200
https://doi.org/10.1074/jbc.M509939200
https://doi.org/10.1091/mbc.E14-06-1156
https://doi.org/10.1091/mbc.E14-06-1156
https://doi.org/10.1016/S0092-8674(00)80380-3
https://doi.org/10.1083/jcb.201008051
https://doi.org/10.1083/jcb.201008051
https://doi.org/10.1074/jbc.M112.427591
https://doi.org/10.1074/jbc.M112.427591
https://doi.org/10.1016/j.yexcr.2005.12.021
https://doi.org/10.1038/ncb1261
https://doi.org/10.1016/j.cub.2005.03.049
https://doi.org/10.1016/j.cub.2005.03.049
https://doi.org/10.1242/dev.089722
https://doi.org/10.1242/dev.089722
https://doi.org/10.1038/cr.2012.110
https://doi.org/10.1242/jcs.00718
https://doi.org/10.1016/S1534-5807(01)00008-9
https://doi.org/10.1016/S1534-5807(01)00008-9
https://doi.org/10.1093/nar/gkq237
https://doi.org/10.1093/nar/gkq237
https://doi.org/10.1186/1471-2164-9-298
https://doi.org/10.1091/mbc.E07
https://doi.org/10.1016/j.bbrc.2006.12.229
https://doi.org/10.1016/j.bbrc.2006.12.229
https://doi.org/10.1016/j.febslet.2004.07.092
https://doi.org/10.1074/jbc.M110055200
https://doi.org/10.1111/j.1365-2958.2004.04224.x
https://doi.org/10.1111/j.1365-2958.2004.04224.x


vesicles, sorting by default in endosomes, and exocytosis via
RAB11-positive carriers. Mol Biol Cell. 2003;14:2029-2040. https://
doi.org/10.1091/mbc.E02.

58. Hall B, Allen CL, Goulding D, Field MC. Both of the Rab5 subfamily
small GTPases of Trypanosoma brucei are essential and required for
endocytosis. Mol Biochem Parasitol. 2004;138(1):67-77. https://doi.
org/10.1016/j.molbiopara.2004.07.007.

59. Allen CL, Goulding D, Field MC. Clathrin-mediated endocytosis is
essential in Trypanosoma brucei. EMBO J. 2003;22(19):4991-5002.
https://doi.org/10.1093/emboj/cdg481.

60. Morrison HG, McArthur AG, Gillin FD, et al. Genomic minimalism in
the early diverging intestinal parasite Giardia lamblia. Science. 2007;
317(5846):1921-1926. https://doi.org/10.1126/science.1143837.

61. Qiu H, Price DC, Yang EC, Yoon HS, Bhattacharya D. Evidence of
ancient genome reduction in red algae (Rhodophyta). J Phycol. 2015;
51(4):624-636. https://doi.org/10.1111/jpy.12294.

62. Klöpper TH, Kienle N, Fasshauer D, Munro S. Untangling the evolu-
tion of Rab G proteins: implications of a comprehensive genomic
analysis. BMC Biol. 2012;10(1):71. https://doi.org/10.1186/174
1-7007-10-71.

63. Mattera R, Bonifacino JS. Ubiquitin binding and conjugation regulate
the recruitment of Rabex-5 to early endosomes. EMBO J. 2008;
27(19):2484-2494. https://doi.org/10.1038/emboj.2008.177.

64. Altschul SF, Madden TL, Schäffer AA, et al. Gapped BLAST and
PSI-BLAST: a new generation of protein database search programs.
Nucleic Acids Res. 1997;25(17):3389-3402.

65. Marchler-Bauer A, Derbyshire MK, Gonzales NR, et al. CDD: NCBI's
conserved domain database. Nucleic Acids Res. 2015;43(D1):
D222-D226. https://doi.org/10.1093/nar/gku1221.

66. Keeling PJ, Burki F, Wilcox HM, et al. The marine microbial eukaryote
transcriptome sequencing project (MMETSP): illuminating the func-
tional diversity of eukaryotic life in the oceans through transcriptome
sequencing. PLoS Biol. 2014;12(6):e1001889. https://doi.org/10.
1371/journal.pbio.1001889.

67. Finn RD, Coggill P, Eberhardt RY, et al. The Pfam protein families
database: towards a more sustainable future. Nucleic Acids Res. 2016;
44(D1):D279-D285. https://doi.org/10.1093/nar/gkv1344.

68. He D, Fiz-Palacios O, Fu C-J, Fehling J, Tsai C-C, Baldauf SL. An alter-
native root for the eukaryote tree of life. Curr Biol. 2014;24(4):
465-470. https://doi.org/10.1016/j.cub.2014.01.036.

69. Derelle R, Lang BF. Rooting the eukaryotic tree with mitochondrial
and bacterial proteins. Mol Biol Evol. 2012;29(4):1277-1289. https://
doi.org/10.1093/molbev/msr295.

70. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy
and high throughput. Nucleic Acids Res. 2004;32(5):1792-1797.
https://doi.org/10.1093/nar/gkh340.

71. Maddison WP, Maddison DR. Mesquite: A Modular System for Evolu-
tionary Analysis. 2015.

72. Darriba D, Taboada GL, Doallo R, Posada D. ProtTest-HPC: fast
selection of best-fit models of protein evolution. Lecture notes in
computer science. Bioinformatics. 2011;6586(8):177-184. https://doi.
org/10.1007/978-3-642-21878-1_22.

73. Lartillot N, Philippe H. A Bayesian mixture model for across-site het-
erogeneities in the amino-acid replacement process. Mol Biol Evol.
2004;21(6):1095-1109. https://doi.org/10.1093/molbev/msh112.

74. Lartillot N, Brinkmann H, Philippe H. Suppression of long-branch
attraction artefacts in the animal phylogeny using a
site-heterogeneous model. BMC Evol Biol. 2007;7(suppl 1):S4. https://
doi.org/10.1186/1471-2148-7-S1-S4.

75. Lartillot N, Philippe H. Computing Bayes factors using thermodynamic
integration. Syst Biol. 2006;55(2):195-207. https://doi.org/10.
1080/10635150500433722.

76. Ronquist F, Teslenko M, van der Mark P, et al. MrBayes 3.2: efficient
Bayesian phylogenetic inference and model choice across a large
model space. Syst Biol. 2012;61(3):539-542. https://doi.org/10.1093/
sysbio/sys029.

77. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and
post-analysis of large phylogenies. Bioinformatics. 2014;30(9):
1312-1313. https://doi.org/10.1093/bioinformatics/btu033.

78. Hirumi H, Hirumi K. Continuous cultivation of Trypanosoma brucei
blood stream forms in a medium containing a low concentration of
serum protein without feeder cell layers. J Parasitol. 1989;75(6):
985-989. https://doi.org/10.2307/3282883.

79. Wirtz E, Leal S, Ochatt C, Cross GAM. A tightly regulated inducible
expression system for dominant negative approaches in Trypanosoma
brucei. Mol Biochem Parasitol. 1999;99(1):89-101. https://doi.org/10.
1016/S0166-6851(99)00002-X.

80. Schönenberger BR. Cultivation and in vitro cloning or procyclic cul-
ture forms of Trypanosoma brucei in a semi-defined medium. Short
communication. Acta Trop. 1979;36(3):289-292. https://doi.org/10.
5169/seals-312533.

81. Redmond S, Vadivelu J, Field MC. RNAit: an automated web-based
tool for the selection of RNAi targets in Trypanosoma brucei. Mol Bio-
chem Parasitol. 2003;128(1):115-118. https://doi.org/10.1016/
S0166-6851(03)00045-8.

82. LaCount DJ, Donelson JE. RNA interference in African trypanosomes.
Protist. 2001;152(2):103-111. https://doi.org/10.1078/1434-461
0-00047.

83. Quijada L, Guerra-Giraldez C, Drozdz M, et al. Expression of the human
RNA-binding protein HuR in Trypanosoma brucei increases the abun-
dance of mRNAs containing AU-rich regulatory elements. Nucleic Acids
Res. 2002;30(20):4414-4424. https://doi.org/10.1093/nar/gkf577.

84. Nolan DP, Jackson DG, Biggs MJ, et al. Characterization of a novel ala-
nine-rich protein located in surface microdomains in Trypanosoma bru-
cei. J. Biol. Chem. 2000;275:4072-4080.

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the sup-

porting information tab for this article.

How to cite this article: Herman EK, Ali M, Field MC,

Dacks JB. Regulation of early endosomes across eukaryotes:

Evolution and functional homology of Vps9 proteins. Traffic.

2018;19:546–563. https://doi.org/10.1111/tra.12570

HERMAN ET AL. 563

https://doi.org/10.1091/mbc.E02
https://doi.org/10.1091/mbc.E02
https://doi.org/10.1016/j.molbiopara.2004.07.007
https://doi.org/10.1016/j.molbiopara.2004.07.007
https://doi.org/10.1093/emboj/cdg481
https://doi.org/10.1126/science.1143837
https://doi.org/10.1111/jpy.12294
https://doi.org/10.1186/1741-7007-10-71
https://doi.org/10.1186/1741-7007-10-71
https://doi.org/10.1038/emboj.2008.177
https://doi.org/10.1093/nar/gku1221
https://doi.org/10.1371/journal.pbio.1001889
https://doi.org/10.1371/journal.pbio.1001889
https://doi.org/10.1093/nar/gkv1344
https://doi.org/10.1016/j.cub.2014.01.036
https://doi.org/10.1093/molbev/msr295
https://doi.org/10.1093/molbev/msr295
https://doi.org/10.1093/nar/gkh340
https://doi.org/10.1007/978-3-642-21878-1_22
https://doi.org/10.1007/978-3-642-21878-1_22
https://doi.org/10.1093/molbev/msh112
https://doi.org/10.1186/1471-2148-7-S1-S4
https://doi.org/10.1186/1471-2148-7-S1-S4
https://doi.org/10.1080/10635150500433722
https://doi.org/10.1080/10635150500433722
https://doi.org/10.1093/sysbio/sys029
https://doi.org/10.1093/sysbio/sys029
https://doi.org/10.1093/bioinformatics/btu033
https://doi.org/10.2307/3282883
https://doi.org/10.1016/S0166-6851(99)00002-X
https://doi.org/10.1016/S0166-6851(99)00002-X
https://doi.org/10.5169/seals-312533
https://doi.org/10.5169/seals-312533
https://doi.org/10.1016/S0166-6851(03)00045-8
https://doi.org/10.1016/S0166-6851(03)00045-8
https://doi.org/10.1078/1434-4610-00047
https://doi.org/10.1078/1434-4610-00047
https://doi.org/10.1093/nar/gkf577
https://doi.org/10.1111/tra.12570

	 Regulation of early endosomes across eukaryotes: Evolution and functional homology of Vps9 proteins
	1  INTRODUCTION
	2  RESULTS
	2.1  Vps9 domain-containing proteins are pan-eukaryotic
	2.2  There were at least three primordial Vps9 family proteins in the LECA
	2.3  Varp and Vps9 domain-containing protein are pan-eukaryotic, but with patchy distribution
	2.4  Alsin is present in Opisthokonta, Amoebozoa and Excavata, and lost in the ancestor of stramenopiles, alveolates, and R...
	2.5  Rabex5 and GAPVD1 evolution in Amorphea
	2.6  RIN is a holozoan innovation
	2.7  Novel domain innovation in Vps9 proteins across eukaryotes
	2.8  Identification and annotation of Vps9 proteins in T. brucei
	2.9  Subcellular localizations of T. brucei Vps9 proteins
	2.10  Roles of TbAlsin and TbRabex5 in endocytosis
	2.11  Physical interaction between TbVps9 proteins and endocytic Rabs

	3  DISCUSSION
	4  METHODS
	4.1  Comparative genomics and evolutionary inference
	4.2  Phylogenetics
	4.3  Culturing of bloodstream and procyclic forms of T. brucei
	4.4  Quantitative real-time polymerase chain reaction
	4.5  RNAi constructs and transfections
	4.6  Plasmid construction and transfection
	4.7  Western blotting
	4.8  Immunoprecipitation
	4.9  Immunofluorescence microscopy
	4.10  Endocytosis assay

	4.10  ACKNOWLEDGMENTS
	  Editorial Process File
	  REFERENCES




