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Abstract

A significant percentage of young men are infertile and, for the majority, the underlying cause remains unknown. Male
infertility is, however, frequently associated with defective sperm motility, wherein the sperm tail is a modified flagella/cilia.
Conversely, a greater understanding of essential mechanisms involved in tail formation may offer contraceptive
opportunities, or more broadly, therapeutic strategies for global cilia defects. Here we have identified Rab-like 2 (RABL2) as
an essential requirement for sperm tail assembly and function. RABL2 is a member of a poorly characterized clade of the
RAS GTPase superfamily. RABL2 is highly enriched within developing male germ cells, where it localizes to the mid-piece of
the sperm tail. Lesser amounts of Rabl2 mRNA were observed in other tissues containing motile cilia. Using a co-
immunoprecipitation approach and RABL2 affinity columns followed by immunochemistry, we demonstrated that within
developing haploid germ cells RABL2 interacts with intra-flagella transport (IFT) proteins and delivers a specific set of
effector (cargo) proteins, including key members of the glycolytic pathway, to the sperm tail. RABL2 binding to effector
proteins is regulated by GTP. Perturbed RABL2 function, as exemplified by the Mot mouse line that contains a mutation in a
critical protein–protein interaction domain, results in male sterility characterized by reduced sperm output, and sperm with
aberrant motility and short tails. Our data demonstrate a novel function for the RABL protein family, an essential role for
RABL2 in male fertility and a previously uncharacterised mechanism for protein delivery to the flagellum.

Citation: Lo JCY, Jamsai D, O’Connor AE, Borg C, Clark BJ, et al. (2012) RAB-Like 2 Has an Essential Role in Male Fertility, Sperm Intra-Flagellar Transport, and Tail
Assembly. PLoS Genet 8(10): e1002969. doi:10.1371/journal.pgen.1002969

Editor: Susan K. Dutcher, Washington University School of Medicine, United States of America

Received March 17, 2012; Accepted August 8, 2012; Published October 4, 2012

Copyright: � 2012 Lo et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by grants from the NHMRC to MKO (#606445) and CJO, the Australian Research Council (MKO, RJA, and CJO), the New South
Wales Cancer Council (CJO), Cancer Institute New South Wales (CJO), Banque Nationale de Paris-Paribas Australia and New Zealand (CJO), RT Hall Trust (CJO), and
the National Breast Cancer Foundation (CJO). JCYL is the recipient of a NHMRC PhD scholarship. MKO and CJO are the recipients of NHMRC Senior Research
Fellowships (#545805 and #481310). CCG is the recipient an NHMRC Australia Fellowship. JCW is the recipient of an Australian Research Council Federation
Fellowship. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: moira.obryan@monash.edu

Introduction

Infertility affects at least 1 in 20 men of reproductive age [1] and

for the majority, the underlying causal mechanism remains

unknown. This, and the absence of effective male-based contra-

ceptives, stems from a fundamental lack of knowledge of the genes

and pathways required to form functional sperm.

Spermatozoa are produced within the seminiferous epithelium

of the testis through a series of processes including stem cell

renewal, meiosis and a radical differentiation process, termed

spermiogenesis, wherein haploid germ cells are transformed into

highly polarized cells with the potential for motility and

fertilization. The mammalian sperm tail, like motile cilia and

flagella from all species, contains an axoneme at its core composed

of a 9+2 microtubule arrangement. The axoneme develops from a

centriole/basal body at the base of the sperm head and functions

to metabolize ATP and generate microtubule sliding and motility

[2]. Unlike the majority of other cilia however, the sperm tail

possesses peripherally arranged accessory structures including the

fibrous sheath and outer dense fibers which impart directionality

to tail beating, protection against shearing forces, and in the case

of the fibrous sheath is a scaffold for enzymes involved in glycolysis

and the generation of at least a proportion of the ATP required as

fuel for axoneme movement [3]. The mechanisms by which the

sperm tail is assembled remain almost completely unknown.

Defects in sperm axoneme function result in asthenospermia

(abnormal sperm motility) [4]. Global defects in motile axoneme

function result in primary ciliary dyskinesia (PCD), a syndrome

characterized by variable presentations of recurrent respiratory

tract infections, male infertility, dextrocardia (Kartegener’s syn-

drome) and hydrocephalus [5].

Using a random mutagenesis approach, we have identified

RABL2 as being essential for sperm tail function and male fertility.

RABL proteins are a poorly characterized sub-family of the Ras

GTPase superfamily originally discovered in Trypanosomes and

Chlamydomonas as an essential component of the intra-flagellar

transport (IFT) particles required for primary cilia function [6,7].

Here we have demonstrated that RABL2 is essential for sperm
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flagella, a motile cilia assembly. Biochemically, RABL2 function is

regulated by GTP, it binds to components of the IFT complex B

machinery and is involved in the delivery a set of cargo protein

either to, or within, the developing flagellum.

Results/Discussion

RABL2 is required for male fertility
In an effort to identify genes critically involved in male fertility,

we used N-ethyl-nitrosourea (ENU) to randomly mutate the mouse

genome. Mice were mutated on a C57BL6 background then

outbreed onto the CBA strain for two generations to facilitate

mutation mapping, after which mice were maintained on a mixed

background through inter-crossing. Mouse lines carrying muta-

tions causing male sterility were identified using breeding trials

[8,9]. The Mot line presented with male sterility with a frequency

of one in four individuals, and was thus strongly suggestive of a

recessive mutation. Mapping narrowed the causal mutation to a

region on chromosome 15 (bp 64,938,858 and 93,141,531)

containing 49 genes. Of these genes, 32 were expressed within

the testis as indicated in EST expression databases, and were thus

potentially causal in the Mot phenotype. The protein-coding

regions and intron-exon boundaries of all 32 genes were amplified

and sequenced and a single homozygous A to G mutation was

identified in exon 5 of the Rabl2 gene in all affected males

(Rabl2Mot/Mot) (Figure 1A). No other mutations were found

within the linkage region. Unaffected (fertile) males possessed

either homozygous wild type alleles (Rabl2WT/WT) or were

heterozygous for the wild type and Mot allele (Rabl2WT/Mot). The

Mot mutation resulted in the substitution of an aspartic acid (D,

negatively charged) for a glycine (G, non-polar) at amino acid 73

of the predicted RABL2 isoforms 1 (ENSMUST00000058058)

and 2 (ENSMUST00000023294), while the predicted isoform 3

(ENSMUST00000094056) would be unchanged as a consequence

of exons 3–5 being removed by splicing (Figure 1A–1B). Thus,

Rabl2Mot/Mot males were sterile because of the single amino acid

substitution in isoforms 1 and 2 of RABL2.

Of note, the frequency and the 100% association between the

D73G mutation and male sterility was unchanged following 7

generations of backcrossing onto a pure C57BL6 background

adding further weight to the identity of the Rabl2 mutation as

causal of the phenotype (data not shown). As indicated results

contained herein were generated using mixed background mice.

Mot males are sterile as a consequence of abnormal
haploid germ cell development and sperm immotility

Quantitative PCR analysis on testes of different ages during

post-natal development and the establishment of spermatogenesis

revealed high levels of isoform 2 and lower levels of isoform 1

mRNAs expression (Figure 2A). Both isoforms 1 and 2 were most

highly expressed from post-natal day 18 when haploid germ cells

first appear in the germinal epithelium (Figure 2B–2C). Immuno-

fluorescent labelling, using a monoclonal antibody generated

against RABL2 isoform 2, confirmed RABL2 localized predom-

inantly to the haploid compartment of the testis (Figure 2D).

Within epididymal sperm, RABL2 was localized to the mid-piece

of the tail (Figure 2D). Pre-absorption of the antibody with the

immunizing peptide prior to immunofluorescent labelling resulted

in the elimination of staining (Figure 2D inset), thus supporting the

specificity of immunolablelling. Immunfluorescent labelling of

testis sections from Rabl2Mot/Mot animals resulted in a similar

localization of RABL2 as that observed in wild type samples

(Figure 2D).

All Rabl2Mot/Mot males examined were sterile when paired with

wild type females (n.20 for periods of up to 6 months). With the

exception of uniform male sterility, Rabl2Mot/Mot males were

outwardly healthy, had normal body weights (Figure S1) and

displayed normal mating behaviour up until at least 10 weeks of

age when tissues were harvested for analysis. In order to define the

cellular cause of male sterility, mice were phenotyped using the

strategy outlined in Borg et al. [10]. Testes from Rabl2Mot/Mot males

contained all germ cell types (Figure 3A–3B), however, testes

weights were reduced by 15% compared to wild type littermates

(91.8 mg versus 78.3 mg, p = 0.0094, n = 6 per group) (Figure 3C).

An analysis of daily sperm production, as indicated by the number

of Triton X-100-resistant nuclei, revealed output was reduced by

49% in Rabl2Mot/Mot males (1.826106 versus 0.936106, p = 0.046,

n = 6) (Figure 3D). Collectively, these data indicate that germ cells

were being lost during the latter part of spermatogenesis wherein

they contribute relatively little to the overall testis weight.

Significant numbers of spermatozoa did reach the epididymis in

Rabl2Mot/Mot males, and were thus available for ejaculation and

fertilization (Figure S1B–S1C). Sperm structure appeared super-

ficially normal (Figure 3E versus Figure 3F). Similarly, electron

microscopy revealed no obvious structural abnormalities in either

the axoneme and accessory structures (outer dense fibers, fibrous

sheath and mitochondrial sheath) (Figure 3I–3J, n = 2 different

genotype animal, 10 sperm per animal). Computer assisted sperm

analysis of sperm from Rabl2Mot/Mot males, however, revealed low

total motility (70.3% versus 51.8%, p = 0.0114, n = 6 per

genotype) and minimal progressive motility (44.1% versus 7.4%,

p = 0.000002, n = 6 per genotype) (Figure 3G). These data strongly

suggest that Rabl2Mot/Mot males were sterile as a consequence of an

inability of sperm to ascend the female reproductive tract following

mating.

RABL2 is evolutionarily conserved
Sequence analysis identified Rabl2 as an uncharacterized

member of the poorly characterized Rab-like clade of the Ras

GTPase superfamily [11]. As indicated in Figure S2, RABL2

contains significant sequence similarity, and a likely evolutionary

origin, to members of the RAB family, however, it forms a distinct

branch within the superfamily – hence the name ‘RAB-like’.

Author Summary

A greater understanding of the mechanism of male fertility
is essential in order to address the medical needs of the 1
in 20 men of reproductive age who are infertile.
Conversely, there remains a critical need for additional
contraceptive options, including those that target male
gametes. Towards the aim of filling these knowledge gaps,
we have used random mutagenesis to produce the Mot
mouse line and to identify RABL2 as an essential regulator
of male fertility. Mice carrying a mutant Rabl2 gene are
sterile as a consequence of severely compromised sperm
motility. Using biochemical approaches we have revealed
that RABL2 binds to components of the intraflagellar
transport machinery and have identified a number of
RABL2 binding (effector) proteins. The presence of the Mot
mutation in RABL2 leads to a significantly compromised
ability to deliver binding proteins into the sperm tail.
RABL2 is predominantly produced in male germ cells;
however, lower levels are notably produced in organs that
contain motile cilia (hair like structures involved in fluid/
cell movement), thus raising the possibility that RABL2
may be involved in a broader set of human diseases
collectively known as primary cilia dyskinesia.

RABL2 Is Required for Sperm Tail Formation
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RABL proteins are defined by being closely related to, but

excluded from the Rab clade due to the absence of one or more

subfamily specific factors [12–14]. In particular, the predicted

RABL2 protein from multiple organisms lacks the canonical C-

terminal prenylation signal, is not identified as a Rab protein by

Rabifier [14] and is excluded from the Rab clade on phylogenetic

analysis using a selected training set of Rab sequences that

encompass the diversity of Rab proteins in eukaryotes [15].

Although the precise biochemistry remains to be defined, recent

data has suggested a role for two RABL proteins in cilia/flagella

development. In particular, inactivation of Rabl5 in Trypanosoma

brucei resulted in stunted and immotile flagella [6], and IFT27

(RABL4) is a core component of the IFT (intra-flagellar transport)

complex B machinery with a role in the anterograde delivery of

proteins from the growing flagella tip in Chlamydomonas and RABL4

is also found in mammals [16–18]. In common with other members

of the complex B, Ift27 RNA interference results in stunted cilia [7].

A RABL2 gene is visible within the human genome on

chromosome 22q13.33 (called RABL2B) [19] (88.7% protein

identity) and orthologues are present in many species, including

the flagellated green algae Chlamydomonas (49% identity) and

Trypanosoma species (51% identity) (Figure 1B). In Homo sapiens we

note that RABL2 has a paralogues expansion (RABL2A). With only

four amino acid changes between the paralogues the functional

significance is unclear. The notable exception to the existence of

RABL2 orthologues in species containing cilia is in Drosophila,

where an orthologue was not identified. The absence of Rabl2

orthologues in organisms lacking cilia/flagella, as defined through

a reverse BLAST search, is suggestive of an evolutionarily

conserved role for RABL2 in cilia/flagella function, and is highly

similar to the phylogenetic distribution of the bona fide IFT factor

IFT22/RABL5 [6].

RT-PCR for RABL2A and RABL2B using whole human testis

mRNA indicated that both paralogues are expressed in the testis

(data not shown, MKOB). EST expression data suggests that

RABL2A is expressed in a wide range of tissues including the

brain, uterus, testis, lung, eye and prostate as well as a range of

cancerous tissues (Unigene entry Hs.446425). EST expression data

suggests that RABL2B is predominantly expressed in the brain,

testis and uterus with lesser amounts in a range of other tissues

(Unigene entry Hs.584862).

Of note, aspartic acid 73 is conserved in all likely orthologues in

all species examined and is thus suggestive of it having a critical

role in RABL2 function (Figure 1B). Western blotting of extract

from equal number of sperm Rabl2WT/WT versus Rabl2Mot/Mot

males revealed comparable levels of protein, indicating the

phenotype was unlikely to be due to mRNA or protein instability,

but rather the specific amino acid change (Figure 3H). These data

Figure 1. The Mot mouse line contains a point mutation in the Rabl2 gene. (A) The Mot line contains a single A to G substitution in the first
codon of exon 5 which would affect RABL2 isoforms (transcript) 1 and 2 but not the putative isoform 3. Boxes indicate exons (white are non-coding
sequences and black are protein coding sequences), lines indicate introns. The arrow indicates the position of the promoter and the transcriptional
direction. ATG indicates the translation initiation site. (B) The Rabl2Mot/Mot mutation results in the conversion of an evolutionarily conserved aspartic
acid (D) into a glycine (G) (arrow). (C) RABL2 contains all five consensus motifs involved in GTP binding in RAB proteins. The consensus motif
sequence is indicated below each shaded box and the actual RABL2 sequence indicated in the box. The asterisk indicates the position of the Mot
mutation.
doi:10.1371/journal.pgen.1002969.g001

RABL2 Is Required for Sperm Tail Formation
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also demonstrate that the D73 mutation does not impede RABL2

entry into the flagella/cilia compartment. This conclusion is also

supported by the immunofluorescent localization of RABL2 in

wild type versus mutant testis tissue sections (consideration should

be given to the decreased numbers of elongated spermatids in

mutant animals) (Figure 2D).

Figure 2. Rabl2 expression and localization. (A) The adult mouse testis expresses mRNA for Rabl2 isoform 1 and isoform 2, of which isoform 2 is
more highly expressed. N = 3 mice per genotype (*** p,0.001). Relative Rabl2 isoform 1 (B) and isoform 2 (C) expression in the developing post-natal
testis indicates that both isoforms are predominantly produced within haploid germ cells which first appear at day 20 post-natal. The day zero value
was set to 1 and all other ages expressed relative to this value. (D) RABL2 localization (red) within wild type and Mot homozygous mutant testis tissue
and caudal epididymal sperm. The inset indicates staining obtained when the primary antibody was pre-absorped with excess immunizing peptide
prior to immunofluorescence. The white arrows indicate the position of the mid-piece of the sperm tail. The yellow arrow indicates the position of the
principal piece. DNA was labelled using DAPI (blue). The relative expression of Rabl2 isoform 1 (E) and 2 (F) in adult tissues. N = 3 mice per group. The
testis was set at 1 and all other tissues expressed relative to this value.
doi:10.1371/journal.pgen.1002969.g002

RABL2 Is Required for Sperm Tail Formation
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Figure 3. The sterility phenotype observed in Rabl2Mot/Mot males. Testis histology from a 10 weeks old wild type (A) and Rabl2Mot/Mot (B) male.
Sections were stained with PAS. Spermatogenesis appeared qualitatively normal. Scale bars represent 100 mm. (C) Testis weights were significantly
reduced in Rabl2Mot/Mot (Mut) animals compared to wild type (WT) littermates. (D) Daily sperm output from 10 weeks old wild type (WT) and
Rabl2Mot/Mot (Mut) males. Haematoxylin and eosin stained sperm from wild type (WT) (E) and Rabl2Mot/Mot (Mut) (F) animals revealed no obvious
differences between genotypes. Scale bars represent 25 mm (G) Sperm from 9 weeks old Rabl2Mot/Mot (black) however, had a significantly
compromised ability for any form of motility and a very pronounced defect in the capacity for progressive motility compared to sperm from wild type
(white) littermates. (H) Sperm from four different wild type and three different Rabl2Mot/Mot males (one mouse per lane) probed for RABL2 protein

RABL2 Is Required for Sperm Tail Formation

PLOS Genetics | www.plosgenetics.org 5 October 2012 | Volume 8 | Issue 10 | e1002969



In common with the RAB GTPases, RABL2 possess all five

consensus motifs required for GTP binding (Figure 1C), but it

lacks the C-terminal prenylation signal required for membrane

interactions classically associated with RAB function [20]. The

possession of motifs involved in GTP/GDP binding in RAB

proteins (Figure 1C) raised the possibility that RABL2 may also

cycle between a GTP-bound ‘active’ form and a GDP-bound

‘inactive’ form.

In order to predict the effect of the Mot mutation on RABL2

function, and thus the underlying biochemical cause of the

observed male sterility, the RABL2 protein sequence was aligned

with the structure of multiple related Ras GTPases. Analyses

revealed that the Mot mutation occurred in a RABL-specific

amino acid in the center of a b-sheet critically involved in

mediating a range of protein-protein interactions for the entire

superfamily (for example RAB1B in complex with the guanidine

dissociation factor and guanidine exchange factor, GEF, DRRA:

pdb identifier 3JZA (Figure S3). In the context of RAB proteins,

GEF proteins function to facilitate the exchange of GDP for GTP

in the nucleotide binding site and thus, convert RABs from an

inactive state to an active state wherein they are capable of binding

to a specific set of effector proteins. If the same biochemistry is

maintained in the RABL sub-group, we hypothesize that the Mot

mutation would impede RABL2 binding to partner proteins,

including with its GEF, and lead to the decreased conversion of

inactive GDP-bound RABL2 into active GTP-bound RABL2.

Ultimately, this would lead to the reduced delivery of effector

proteins to target locations, in this instance the sperm tail.

RABL2 binds to components of the IFT complex B, and
GTP-bound RABL2 is essential for the delivery of key
components to the developing sperm tail

The sequence homology between RABL2 and RABL4 in

Chlamydomonas and RABL5 in Trypanosomes and the sperm tail

phenotype in homozygous Mot mutant males, raised the possibility

that RABL2 may also interact with components of the IFT

machinery and have a role in defining sperm tail (motile cilia)

length. In order to investigate this hypothesis, we perform

immunoprecipitation using testis homogenate with specific IFT

complex B component antibodies and then probed for RABL2

using Western blotting. Data revealed an interaction between

RABL2 and all of IFT27, IFT81 and IFT172 (Figure 4A). Of

interest, binding to IFT27 and IFT81 was apparently equal in the

presence of GTP or GDP. IFT172 however, preferentially bound

to GDP-RABL2. The significance of preferential binding to

inactive RABL2 is currently unknown.

Immunofluorescent microscopy revealed the co-localization of

RABL2 and each of IFT27, IFT81 and IFT172 within the mid-

piece of elongated spermatids within the testis (Figure 4B–4E).

Free (not co-localized with RABL2) IFT proteins were frequently

observed within the principal piece of developing sperm, thus,

raising the possibility that the annulus which sits at the junction

between the mid- and principal-pieces may act as a barrier to

RABL2 movement.

A role for RABL2 in defining sperm tail length was further

supported by a 17% reduction in the length of sperm tails from

Rabl2Mot/Mot males compared to those from wild type males (93 mm

versus 111 mm, p,0.0001, n = 4 per genotype) (Figure 3K).

Collectively, these data support a role for RABL2 in the assembly

of the sperm tail. At present however, it is not possible to

determine whether RABL2 is specifically involved in protein

transport along the entire length of the cilia compartment, or if the

sperm tail phenotype is secondary to a more generalized defect in

RABL2-mediated (in conjunction with IFT components) protein

transport in the cytosol (including the mid-piece of the sperm).

As indicated above, the presence of the 5 motifs characteristic of

GTP binding in RABs raises the possibility that RABL2 may cycle

between a GTP-bound active state and a GDP-bound inactive

state. If true, active GTP-bound RABL2 would be expected to

bind to a set of effector proteins and deliver them to the developing

sperm tail compartment, as the major site of RABL2 localization

and the mediator of the Rabl2Mot/Mot phenotype. In order to test

this hypothesis and identify putative effector proteins, recombinant

RABL2 (isoform 2) was produced in E.coli and conjugated to

agarose in either a GTP-bound or GDP-bound state and

incubated with adult mouse testes extracts. Following extensive

washing, protein bands preferentially bound to ‘active’ GTP-

bound RABL2 were identified using mass spectrometry (Figure

S4). 89 proteins were identified (Table S1). Of these, five were

content. Protein loading was normalized using the sperm head protein ACRBP. (J–K) Electron microscopy of a cross-section of the mid-piece of a
sperm from a wild type (WT) (I) and Rabl2Mot/Mot male (J) revealed no discernable difference in ultrastructure. (I) The length of sperm tails from wild
type (WT) and Rabl2Mot/Mot (Mut) males. (* p,0.05, ** p,0.01, *** p,0.001).
doi:10.1371/journal.pgen.1002969.g003

Figure 4. RABL2 binds to components of IFT complex B. (A)
Immunoprecipitation of IFT complex B components (IFT27, IFT81 and
IFT172) from testis extracts showed that all three were bound to RABL2.
Ig = an immunoglobulin isotype and concentration matched control.
2/+ indicate the presence of exogenous GTP in the testis homogenate
to explore the potential regulation of binding to RABL2 by GTP binding
status. (B–E) The co-localization of RABL2 (red) in the mid-piece of
elongating spermatids (white arrows) within the seminiferous epithe-
lium with each of IFT27 (B), IFT81 (C) and IFT172 (D). (E) A representative
primary antibody control wherein the primary antibody was omitted
from the staining protocol. Scale bars equal 25 mm.
doi:10.1371/journal.pgen.1002969.g004

RABL2 Is Required for Sperm Tail Formation
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chosen for further analysis based on known roles in fertility or cilia

function, the availability of analytical reagents and confirmation of

preferential binding to the GTP-bound form of RABL2

(Figure 5A). Putative effector proteins analyzed included:

ATP6V1E1 which is a protein exchanger localized to several

ciliated tissues including the olfactoary epithelium [21]; the

microtubule plus end trafficking protein EB1 which is involved

in centrosome function and primary cilia development in the

retina [22]; HK1 which is a component of the fibrous sheath of the

sperm tail with a role in glycolysis [23]; the chaperone HSP4AL

which has a role in prophase I of meiosis and haploid germ cell

development [24]; and LDHC which is also a component of the

glycolytic pathway and localized to the fibrous sheath [25]. Of

note, genetic or chemical inhibition of LDHC or HK1 results in

reduced ATP generation and the inhibition of axoneme micro-

tubule sliding and thus, sperm immotility [23,25]. Specific

interactions between RABL2 and all five effector proteins were

confirmed by co-immunoprecipitation using antibodies directed

against the effector proteins (Figure 5B). These data indicate that

in common with RAB proteins, GTP-bound RABL2 binds to a

specific set of cargo proteins.

The effect of the Mot mutation on sperm development and the

ultimate fate of the effector proteins was then tested through an

examination of the relative effector proteins content, using

immunofluorescence and Western blotting, on sperm collected

from wild type and Rabl2Mot/Mot mice (n = 3 mice per genotype). Of

note, sperm from wild type and Rabl2Mot/Mot mice were immuno-

labelled and photographed in parallel and under identical

conditions. Within sperm from wild type mice ATP6V1E1, EB1,

HK1 and LDHC were localized primarily to the principal piece of

the sperm tail (Figure 6). Less intense staining for HK1 was observed

within the mid-piece of the tail. HSPA4L staining was observed as

speckled staining along both the mid- and principal pieces of the

sperm tail. In addition, all of ATP6V1E1, EB1 and HSPA4L were

observed in the peri-acrosomal region of the sperm head (Figure 6).

Consistent with the hypothesis that the Mot mutation would lead to

decreased delivery of effector proteins, sperm tails from Rabl2Mot/Mot

mice contained relatively lesser amounts of all of ATP6V1E1, EB1,

HK1s, HSP4AL and LDHC than sperm from wild type mice

(Figure 6). The preferential localization of RABL2 to the mid-piece

and of the effector proteins to the principal piece of the sperm tail

under normal conditions and the residual localization of HK1 to the

mid-piece, but not the principal piece, in sperm from Rabl2Mot/Mot

males is suggestive of a role for RABL2 in the delivery of effector

proteins up to the annulus, but not beyond. By contrast to the

apparent decreased content of ATP61E1, EB1 and HSPA4L in the

sperm tail, the association with the peri-acrosomal region of the

sperm head was not obviously changed. This data is consistent with

IFT transport being a specific requirement for protein transport into

the cilia/flagella compartment.

Decreased effector protein content in sperm from Rabl2Mot/Mot

males compared to sperm from wild types was confirmed by

Western blotting (Figure 6). As a consequence of the apparent

specific requirement of RABL2 for tail development, the relative

effector protein content per sperm as measured by Western

blotting needs to be qualified as it measured total sperm content

i.e. head and tail. Regardless, all effector proteins, with the

exception of EB1, were reduced.

Collectively, these data demonstrate that RABL2 function is

regulated by GTP binding and that the D73 mutation compro-

mised effector protein delivery into the growing sperm tail. The

presence of residual levels of effector within the Rabl2Mot/Mot sperm

suggest that the Mot mutation is either hypomorphic or some

functional redundancy exists with other proteins.

RABL2 shows an expression bias towards tissues
containing motile cilia in the mouse

In order to define the distribution of RABL2 in the mouse, and

thus tissues wherein additional pathology may be anticipated, a tissue

survey for Rabl2 expression was undertaken using quantitative PCR

methods. Rabl2 isoform 1 and 2 mRNA are both enriched within the

male germ line (Figure 2E–2F). Both forms were however, widely

expressed and notably within other tissues containing motile cilia

including the lung, trachea, brain, ovary and kidney. Isoform 3 was

not detected in any tissues examined (data not shown).

Concluding comments
Through the use of random mutagenesis we have identified

RABL2 as an evolutionarily conserved protein with an essential

role in male fertility. As far as we can discern, the Mot line is the

first model of Rabl2 dysfunction in any species. Here we have

demonstrated that RABL2 binds, in a GTP-regulated manner, to

a specific set of effector proteins including key proteins involved in

cilia development and function and delivers them into the growing

sperm tail. Herein we have also defined the first component of a

pathway by which components of the fibrous sheath are

transported into the tail. Further, analogous to a recent report

on the function of RABL5 in Chlamydomonas reinhardtii [26], RABL2

binds components of the IFT complex B in mammals, and RABL2

dysfunction results in shortened sperm tails. It is the absence of the

effector proteins that likely mediates the sterility observed within

the Mot mouse line.

The reproductive phenotype observed in the Mot mouse lines is

remarkably similar to that seen in a sub-group of infertile men. Such

men would be classified as having oligoasthenospermia i.e. decreased

sperm output and severe motility defects but normal sperm

morphology, and would usually be investigated for primary ciliary

dyskinesia (PCD) [1,27]. PCD is usually a recessive syndrome

occurring in 1 in 20,000–60,000 live births (Mendelian Inheritance

in Man no. 232,650) and is most frequently characterized by

recurrent lung disease (from childhood), sinusitis and male infertility

in adults [5,28]. More variably PCD is associated with hydroceph-

alus, laterality defects and polycystic kidney disease. Known causes of

Figure 5. The identification of RABL2 effector proteins. (A)
Preferential binding of candidate effector proteins to GTP-RABL2 (active
state) over GDP (inactive state) was confirmed by Western blotting of
additional affinity column eluates. (B) Specific binding of effector
proteins to RABL2 was confirmed by immunoprecipitation of effector
proteins (EP) from testis homogenates then probing for binding to
RABL2 in Western blots. The specificity of immunoprecipitations was
confirmed using parallel reactions wherein the precipitating antibody
was replaced by isotype and concentration matched immunoglobulin.
doi:10.1371/journal.pgen.1002969.g005
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human infertility include mutations in the axoneme component

genes DNAI2, DNAH5, DNAH11, DNAAF2 and LRRC50, RSPH4A

and RSPH9 which contribute to the development of the central

tubules of the axoneme, TXNDC which is a thioredoxin and the

coiled coiled proteins encoded by CCDC39 and CCDC40 which are

involved in the early stages of axoneme assembly [29,30].

Collectively however, the underlying aetiology remains unknown

in ,60% of cases. Several additional candidate genes have been

identified using mouse studies e.g. Pacrg [31], Spef2 [32], Cby [33],

and Pcdp1 [34]. It is clear however, from both human and mouse

studies that the composition of cilia (including motile cilia) varies

subtly between tissues, thus leading to a spectrum of clinical

presentations in ciliopathies (http://v3.ciliaproteome.org, [35]).

Regardless, Rabl2 expression data suggests that RABL2 may be a

candidate primary ciliary dyskinesia gene.

Methods

Identification of the Mot line
Animal procedures were approved by the Australian National

University and Monash University Animal Experimentation Ethics

Committees and performed in accordance with Australian NHMRC

Guidelines on Ethics in Animal Experimentation. Point mutant mice

were generated on a C57BL/6 background and outbred to CBA for

two generations before being inter-crossed as described previously

[8]. In order to identify lines containing sterility causing mutations,

eight G3 brother-sister pairs per line were co-housed and the

presence of pups monitored. If no pups were observed following six

weeks, mice were re-paired with wild type partners to determine the

origin of the infertility. The presence of copulatory plugs was

monitored as an indication of mating behaviour. Lines wherein male

sterility was observed in a ratio of approximately one in four with

apparently normal mating behaviour were analyzed further.

Identification of the infertility causing mutation in the
Mot line and genotyping

The sterility causing mutation was mapped using a SNP-based

method. Genomic DNA from five affected males was hybridized

onto Affymetrix 5K mouse SNP Chips at the Australian Genome

Research Facility and sequences compared to wild type C57BL6

and CBA sequences. The linkage interval was narrowed using

additional mice and SNPs (www.well.ox.ac.uk/mouse/

INBREDS/). SNP typing was performed using the Amplifluor

SNP Genotyping System (Chemicon) and plates read in a BMG

Fluostar Optima fluorescent microplate reader. The sequence of

testis expressed candidate genes was determined by sequencing all

protein coding exons and ,50 bp of flanking introns through the

Australian Genome Research Facility.

Following the identification of the phenotype causing mutation,

mice were genotyped using the Amplifluor system using a wild type-

specific primer 59-GAAGGTCGGAGTCAACGGATTACA-

GAGTTGTGTTCTTGTTGCAGA-39, a mutant allele primer

59-GAAGGTGACCAAGTTCATGCTAGAGTTGTGTTCTT-

GTTGCAGG-39, an antisense primer, 59-AGCCTTGTGGTAG-

TAGGAAGCA-39 and Platinum Taq DNA Polymerase (Invitro-

gen): 1 cycle, 95uC, 4 min; 35 cycles, 95uC, 10 sec; 60uC, 20 sec:

72uC, 40 sec and a final extension at 72uC, 3 min.

Infertility characterization
Mot infertility was classified using the regime outlined in [10].

Daily sperm outputs were determined using the Triton X-100 nuclear

solubilization method as described previously [36]. Sperm motility

was assessed using computer assisted sperm analysis (n = 6/genotype)

[37] and ultra-structure using electron microscopy (n = 2/genotype,

average 10 sperm/mouse) [38]. Cauda epididymal sperm tail length

was measured (10 weeks old, n = 4/genotype) following staining with

hematoxylin and eosin. 40 tails/mouse were measured using Imaging

technology MetaMorph software (Molecular Devices).

Orthology searches and sequence alignment
To identify RABL2 orthologues, the mouse RABL2 isoform 2

sequence was used as a query in organism specific BLAST

searches against protein sequence databases at NCBI. The highest

scoring hit was reverse BLASTed against the mouse predicted

proteome. Only sequences where mouse RABL2 came up as the

highest identify were considered as containing RABL2 ortholo-

Figure 6. The Mot mutation resulted in the decreased delivery of effector proteins into sperm tails. The immunolocalization of RABL2
effector proteins (red) in sperm from wild type and Rabl2Mot/Mot mice. DNA was labelled with DAPI. The percentage change in total sperm content of
individual effector proteins was quantitated using Western blotting blotting (right hand panel, upper bands). Sperm protein loading was normalized
to sperm head protein ACRBP (right hand panel, lower bands). Each Western blot was done a total of three times and results averaged. This figure
contains representative images. The approximate percentage change (rounded to the nearest 10% to reflect the non-linearity of ECL detection
methods) and the p values are indicated. N = 3 animals per genotype per effector protein.
doi:10.1371/journal.pgen.1002969.g006
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gues. The species databases searched were Homo sapiens, Macaca

mulatta, Trichomonas viginalis, Tetrahymena thermophila, Anolis carolinesis,

Monodelphis domestica, Ornithorhynchus anatinus, Danio rerio, Gallus gallus,

Xenopus (Silurana) tropicalis, Leishmania major, Chlamydomonas reinhardtii,

Amphimedon queenslandica, Saccoglossus kowalevskii, Cryptosporidium

parvum, Theileria parva, Dictyostelium discoideum, Caenorhabitis elegans,

Cryptococcus neoformans, Guillardia theta, Saccharomyces cerevisiae, Physco-

mitrella patens, Arabidopsis thaliana, Nasonia vitripennis, Plasmodium

falciparum, Drosophilia melanogaster, Nematostella vectensis, Monosiga

brevicollis, Thalassiosira pseudonana, Phytophthora ramorum, Naegleria

gruberi, Toxoplasma gondii, Cyanidioschyzon merolae, Paramecium tetra-

urelia, Trypanosome cruzi, Trypanosome brucei and Eimeria tenella.

A selection of RABL2 orthologues were aligned using

ClustalW2 (http://www.ebi.ac.uk/Tools/msa/clustalw2/). Mus

musculus RABL2 transcript 2 sequence (ENSMUST000-

00023294,CCDS49704) was aligned with eight other taxa

sequences obtained from NCBI (http://www.ncbi.nlm.nih.gov/).

Sequences included: Homo sapiens (NP_009013.1 and

NP_001003789.1); Gallus gallus (XP_424473.1); Xenopus (Silurana)

tropicalis (NP_001072451.1); Danio rerio (NP_001038428.1); Anolis

carolinensis (XP_003229013.1); Leishmania major (XP_001685503.1);

Chlamydomonas reinhardtii (XP_001697212.1); and Trypanosome brucei

(XP_829561.1).

Construction of a phylogenetic tree
Selected RABL2 orthologues were aligned using muscle against

a master RAB dataset that contained representatives of all RAB

subfamilies previously identified as present in the last eukaryotic

common ancestor, together with representative Ran sequences as

an outgroup [15,39]. The alignment was edited in Mesquite to

remove regions of high divergence, and a phylogenetic tree built

using Mr Bayes v3.2 and RAxML v7.0.3 [40,41]. Highly divergent

sequences were deleted and a second round of analysis performed.

These data confirm that RABL2 falls within the RAB-like GTPase

grouping, and are monophyletic, and hence a distinct paralogous

family.

RABL2 expression
The relative expression of Rabl2 during post-natal testis

development (day 0–70) and other adult tissues was defined using

quantitative PCR using Brilliant Fast SYBR Green QPCR Master

Mix (Stratagene) in the Agilent Mx 3000P QPCR System: 95uC,

2 min; 95uC, 5 sec; 60uC, 20 sec; 95uC, 2 min; then 72uC, 20 sec,

for 50 cycles. Primers were: Rabl2201 59-TCGATTAG-

CTGTGGCTTACAAA-39 and 39-CCTGTAAAACCTCGTC-

CATGA-59; Rabl2202 59-CTGCACCTGGGTGACAGTAA-39

and 39-CATCTTGGGAAGGGAAACAA-59. 18S expression

was used as a reference in post-natal testis expression analysis.

Differential expression was analyzed using the 2DDCT method [42].

N = 3 separate mice per age.

Recombinant RABL2 production
Full-length Rabl2 (isoform 2) was amplified from wild type testes

cDNA using the primers: 59-ATAACCCGGGGTTCTG-

CAGGGGACAGAAACAGGCA-39 and 59-ATCTCCATGGT-

TAGGAAGGAGATGGGCTCTTG-39, then cloned into the

XmaI and Ncol sites of pET32a (Novagen). Recombinant RABL2

was produced and the histidine tag removed as described

previously [43].

N-terminal tagged GST-RABL2 was generated using the Gateway

cloning system (Life Technologies) according to manufacturer’s

instruction using pDEST15 vector and primers Rabl2-attB1: 59-

GGGGACAAGTTTGTACAAAAAAGCAGGCTTAGAAAAC-

CTGTATTTTCAGGGCGCAGGGGACAGAAACAGG-39

and Rabl2-attB2: 59-AGCCCATCTCCTTCCTAATACCCAGC-

TTTCTTGTACAAAGTGGTCCCC -39 with pDOR222 and

pDEST15. Recombinant protein was produced as described above.

RABL2 antibody production
RABL2 mouse monoclonal antibodies were generated against

recombinant RABL2 isoform 2 at the Monash University

Antibody Technology Facility. Clones were amplified and purified

as described [44]. Immunoglobulin was purified from media using

Protein G FF sepharose beads (GE Healthcare), dialyzed against

PBS and the concentration determined using the DC assay

(Biorad).

Immunofluorescent microscopy
RABL2 and IFT protein immuno-localization was done on fixed

frozen testis sections and sperm smear post-fixed in 4% parafor-

maldehyde. Primary antibodies included RABL2 (RG2–G8) 6 mg/

ml, IFT27 4 mg/ml (Santa Cruz), IFT81 10 mg/ml (Santa Cruz),

IFT172 6 mg/ml (Santa Cruz). Effector proteins were localized on

1:1 methanol:acetone fixed sperm [45]. Primary antibodies

included: HK1 0.4 mg/ml (Sigma), ATP6V1E1 4 mg/ml (Abcam),

EB1 4 mg/ml (Santa Cruz), HSPA4L 4 mg/ml (Abcam), LDHC

0.5 mg/ml (Sigma). Secondary antibodies included: donkey anti-

mouse Alexa Fluor 555, donkey anti-rabbit Alexa Fluor 488, Alexa

Fluor 555 and donkey anti-goat Alexa 555 (Life Technologies).

DNA was visualized using 1 mg/ml 49,6-diamidino-2-phenylindole

(DAPI). Images were taken with Nikon C1 Eclipse C1 plus 90i

upright automated microscope or Leica SP5 5 channels confocal

invert microscope in the Monash University Microimaging Facility.

Different excitation lasers (408 nm, 488 nm or 561 nm) were used

depending on Alexa fluor dye conjugated to secondary antibody.

The specificity of immunolabelling was determined by staining

parallel sections in the absence of the primary antibody. The

specificity of RABL2 staining was determined by pre-absorbing the

antibody with a 500-fold molar excess of the immunizing peptide

prior to immunochemistry in parallel with a non-preabsorbed

positive control.

The identification of RABL2 effector proteins and
Western blotting

Putative RABL2 testis effector proteins were identified using

RABL2 affinity columns loaded with either GTP or GDP to create

active and inactive RABL2 as described previously [46]. Eluted

proteins were visualized on 12% SDS-PAGE gels using Coomassie

brilliant blue. Proteins that preferentially bound to GTP-RABL2

were excised and sequenced by nano-LC ESI MS/MS at the

Australian Proteomics Analysis Facility. Only proteins with two or

more unique peptides matches with a Mascot scores of at least 40

were considered as putative effector proteins. Of the 89 non-

redundant proteins identified, five were chosen for further analysis

based on known roles in sperm or cilia function and the availability

of analytical reagents. Preferential binding to GTP-RABL2 was

confirmed by Western blotting on additional column eluates and

by co-immunoprecipitation using antibodies directed against

putative effector proteins. Briefly, 2 mg of adult mouse testis

lysate was incubated with 4 mg of the target antibody: HK1 (Santa

Cruz), ATP6V1E1 (Abcam), EB1 (Santa Cruz), HSPA4L

(Abcam), LDHC (Abnova) supplemented with 100 mM GTPcS

(Jena Bioscience). Interacting proteins were captured by protein G

magnetic beads (Millipore) and eluted with 0.1 M glycine, pH 2.7.

Protein binding to RABL2 was assessed by Western blotting.

Negative control reactions included incubation with immunoglob-

ulin of the appropriate species and at a matching concentration.
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The relative content of RABL2 and effector proteins in sperm

was determined using Western blotting of protein from 26106

sperm per lane from wild type versus mutant mice (n = 3, each

lane containing sperm from one mouse). Samples were separated

by 12% SDS-PAGE and transferred onto PVDF membrane.

Membrane was blocked using 5% skim milk in PBS followed by

incubation with the primary antibody overnight at 4uC. Samples

were probed with the following antibodies separately. ATP6V1E1

4 mg/ml, EB1 0.4 mg/ml, HSPA4L 4 mg/ml, HK1 0.04 mg/ml,

LDHC 2 mg/ml. Sample loading was normalized using pro-

acrosomal binding protein (ACRBP) content and values were

averaged over the three mice and compared between genotypes. A

sperm head protein was used for normalization as the use of a tail

protein e.g. actin, would have skewed the data as a consequence of

short sperm tails being a component of the phenotype. Positive

band intensity was measured and analyzed by ImageJ (http://

imagej.nih.gov/). P values of ,0.05 were considered as significant.

The ACRBP antibody was raised against the peptides

CEMNELYDDSWRSQSTG and CLLRNQNRKMSRMR in

goats as described previously [8,47] and used at a dilution of 1 in

100,000.

The potential for RABL2 to interact with components of the

IFT pathway was explored using co-immunoprecipitations with

1 mg of adult testis lysate incubated with 4 mg of IFT172, IFT81,

IFT27 (Santa Cruz) antibodies as discussed above. Immunopre-

cipitated complexes were separated on 12% SDS-PAGE gels then

probed for RABL2 (5 mg/ml) in a Western blot as described

above.

Statistics
Student’s t-test was used to compare the means of two

populations using Graphpad Prism 5.0. P values,0.05 was used

to define statistical significance.

Supporting Information

Figure S1 The effect of the Rabl2Mot/Mot mutation on body

weight and epididymal histology. (A) The Rabl2Mot/Mot mutation

had no discernable effect of body weight at 9 weeks of age, n = 8.

(B–C) Epididymal histology did not differ noticeably between WT

(B) and Rabl2Mot/Mot animals (Mut, C). Scale bars equal 100 mm.

(TIF)

Figure S2 Phylogeny of selected representatives of RAB

subfamilies in comparison to likely RABL2 orthologues. Numbers

on internodes refer to MrBayes posterior probability/PhyML

bootstrap support values and the PhyML topology is shown.

RABL2 species included are as follows: Homo sapiens (RABL2A and

RABL2B), Mus musculus, Trypanosoma brucei, and Chlamydomonas

reinhardtii. Remaining data are a subset of sequences used for

Figure 3 of Elias et al [15]. The reconstruction demonstrates that

the RABL2 sequences are excluded from the true RAB group,

albeit with evidence of being closer to RABs than the outgroup

Ran. In his reconstruction there is evidence for a close relationship

with the RTW RAB-like GTPases, and suggesting that RABL2

and RTW are monophyletic. In a separate reconstruction where

the RTW sequences were removed, RABL2 sequences were

robustly reconstructed as monophyletic, and also eliminating long

branch attraction artifact. Together with the absence of some

canonical sequence features, these data are consistent with the

annotation of RABL2 as RAB-like.

(TIF)

Figure S3 The position of the Mot mutation within a RAB

protein structure. The structure of Rab1 (green) bound to a GEF-

domain (3JZA [48], blue). The position of D93 (Q60 in Rab1) at

the Rab1/GEF interface is shown as red spheres (Q60 is in the

equivalent position to D73 in RABL2). This position is close to the

interface formed by RAB proteins with other binding partners

including SEC2p. The figure was produced using PYMOLSEC2

p.

(TIF)

Figure S4 SDS-PAGE size fractionation of eluates from GTP-

RABL2 (GTP, active) and GDP-RABL2 (GDP, inactive) affinity

columns. Lines indicate the position of gel slices analysed by mass

spectrometry.

(TIF)

Table S1 Putative RABL2 effector proteins.

(DOC)
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