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Sending the message: specialized RNA export
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Highlights
mRNA export is a highly complex pro-
cess at the core of gene expression con-
trolling mRNA abundance. Steps include
maturation, quality control ensuring that
mRNAs are correctly coding, and the
export process itself.

Trypanosomes have distinct mecha-
nisms for producing mRNA which sets
them apart from animals and fungi.
These include trans-splicing, absence of
introns within open reading frames and
Export of RNA from the nucleus is essential for all eukaryotic cells and has
emerged as a major step in the control of gene expression. mRNA molecules
are required to complete a complex series of processing events and pass a
quality control system to protect the cytoplasm from the translation of aberrant
proteins. Many of these events are highly conserved across eukaryotes,
reflecting their ancient origin, but significant deviation from a canonical pathway
as described from animals and fungi has emerged in the trypanosomatids. With
significant implications for the mechanisms that control gene expression and
hence differentiation, responses to altered environments and fitness as a
parasite, these deviations may also reveal additional, previously unsuspected,
mRNA export pathways.
polycistronic transcription. These require
distinct processes to produce mature
mRNAs, which are near identical in
structure to higher eukaryotes.

We describe how distinct mecha-
nisms for mRNA processing have
resulted in changes to mRNA export
mechanisms, encompassing nuclear
pore complex composition and orga-
nization, mRNA maturation, and quality
control mechanisms.
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Delivering a coded message from the nucleus: opisthokonts versus
kinetoplastids
All cellular life relies on RNA, and consequently RNA-related processes are highly conserved,
including the basic features of transcription and translation. With the major innovation of
eukaryogenesis being evolution of the nuclear envelope (NE), which separates transcription
from translation, both new challenges and opportunities for RNA metabolism emerged. These
include the potential for extensive post-transcriptional processing events, which, for mRNA,
includes splicing, polyadenylation, and nucleoside modifications throughout, together with a
requirement for an export pathway. mRNA export and processing are coupled in eukaryotes
as a multistep process that essentially safeguards the translational apparatus from aberrant
mRNAs encoding potentially toxic products.

Trypanosomes are obligatory parasites of invertebrates, vertebrates, and/or vascular plants and
cause major public health and economic impact. Their lineage arose from very early separation
from the main eukaryotic line and likely shortly following radiation from the Last Eukaryotic Com-
mon Ancestor (LECA) [1–3]. Trypanosomes (members of the Kinetoplastida class within the phy-
lum Euglenozoa) deviate from canonical mechanisms for many aspects of their biology and gene
expression especially, with perhaps the headline features being polycistronic transcription
together with trans-splicing (see Glossary) and the near absence of cis-splicing [4–6]. Early
studies intimated that control of individual genes through promoter activity is lacking in trypano-
somes due to polycistronic transcription, arguing for control mechanisms focused on mRNA
turnover and elements within the 3′ untranslated region. This is, however, likely an oversimplifica-
tion as there are multiple steps between transcription and translation, most of which are shared
between essentially all eukaryotes (Figure 1).

mRNA processing and export, as mapped in animals and fungi (both members of the
Opisthokonta eukaryotic supergroup), is supported by multiple complexes, amongst which are
the EJC (exon-junction complex), CPSF (cleavage and polyadenylation specificity factor),
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Glossary
CPSF (cleavage and
polyadenylation specificity factor)
complex: recognizes a hexanucleotide
AAUAAA motif in pre-mRNA
polyadenylation signals for cleavage.
Conserved across eukaryotes, although
incompletely characterized in most
lineages. Target of benzoxaborole drugs
(such as acosiborole) in many parasites.
Mex67: an mRNA export factor
associated with a bewildering set of
synonyms. It is known asNXF1 or TAP in
mammalian systems, and forms a
heterodimer with Mtr2, which is known
as NXT1 or p15 in mammals. Both
contain an NTF2 domain important for
their heterodimerization and association
with NPCs.
Nuclear basket: a subcomplex of the
NPC that faces the nucleoplasm. It has
considerable influence on chromatin and
gene expression as well as organization
of late mRNA processing and export. It
has multiple configurations across
eukaryotes.
Nuclear pore complex (NPC): a large
proteinaceous assembly that mediates
bidirectional transport of proteins and
RNA between the cytoplasm and
nucleoplasm. Multiple
nucleocytoplasmic transport pathways
utilize this exclusive channel. Conserved,
with notable variations, across
eukaryotes.
Ran: a small GTPase of the Ras
superfamily and a master regulator, and
energy source, driving many NPC-
mediated transport pathways. It is
conserved across eukaryotes.
trans-splicing: a process in which
mRNAs are resolved from polycistronic
mRNAs, and a short exon, transcribed
elsewhere in the genome, is spliced to
the 5′-end. The mechanism is similar to
that of conventional cis-splicing.
TREX (transcription export)
complex: a multiprotein complex that
plays a major role in the coupling of
many steps during mRNA biogenesis,
including mRNA transcription,
processing, and nuclear export. It is
partly conserved across eukaryotes.
TREX-2 (three prime repair
exonuclease 2) complex: a platform
that binds many components of the
nuclear mRNA processing machinery.
Only partial conservation across
eukaryotes is observed.
TREX (transcription and export), and TREX-2, as well as the NPC (nuclear pore complex)
(Figure 1). Components of each of these complexes are present across the eukaryotic lineage, but
several complexes are overall poorly conserved in other lineages such as trypanosomes. Hence,
despite the core aspects of RNA metabolism, there has been at least one billion years since the
eukaryotic lineage arose and expanded, offering considerable scope for diversity to have evolved
between these processes in different lineages. Here we discuss divergence within the NPC and
mRNA processing factors that lead to highly distinct mechanisms for sendingmRNA to the cytoplasm
in trypanosomes and speculate as to their origins and purpose (Figure 2 and Table 1).

The pore is the core
After transcription, processing, andmaturation,most RNAs are transported from the nucleus through
NPCs, macromolecular protein assemblies embedded within the NE which facilitate selective trans-
port between the nucleoplasm and cytoplasm [7]. This transport process is highly complex with
evidence for lineage-specific mechanisms, of which kinetoplastids and opisthokonts provide
exemplars (Figure 2 and Table 1); amongst these are structural and compositional changes within
the NPC, NPC-associated RNA-processing complexes, and transport factors [8].

NPCs are octagonal structures composed of ~30 different proteins termed nucleoporins (Nups),
present in multiple copies to comprise approximately 500 total proteins per NPC (Figure 2) [9–11].
Substructures within the NPC, such as a proteinaceousmembrane ring anchoring the NPC to the
NE and a core structural scaffold attest to a modular evolution and functionality (Figure 2). The
scaffold anchors a class of Nups that contain disordered regions of phenylalanine glycine (FG)
and related dipeptide repeats. These proteins are primarily responsible for the selective perme-
ability barrier of the NPC. Transport factors, variously called karyopherins (yeast), or importins
and exportins (animals) facilitate transport by virtue of specific interactions with FG-repeats,
while these same regions exclude non-karyopherin-bound proteins [7,12,13]. The scaffold also
anchors a subset of asymmetrically positioned peripheral Nups (Figure 2) [14], which include
nucleoplasm oriented FG-Nups, as well as the nuclear basket, which interacts with nuclear
mRNA processing complexes which constitute an RNA export platform (Table 1) [15–18]. The
NPC thus acts as an interacting platform, especially for peripheral substructures, to provide a
hub for multiple steps in gene expression.

Trypanosomes as models for studying evolution of RNA processing and export
The trypanosome NPC appears to be of similar overall architecture and complexity to that of the
opisthokonts, including having an evolutionarily conserved cohort of transport factors [19,20].
Thus, trypanosomes offer an excellent system through which to compare various mRNA pro-
cessing steps, and many of the divergent features place greater reliance on post-transcriptional
mechanisms than in opisthokonts. More recently, roles for mRNA-binding proteins (RBPs) are
being uncovered, a significant number of which are lineage-specific [21,22]. Some RBPsmediate
expression of entire cohorts of mRNAs, acting as master regulators [23–25]. It is formally possible
that trypanosome transcription and mRNA-processing mechanisms are simply reduced com-
pared with opisthokonts and reflect an absence of control over the environment, negating any
need for complex responses to improve fitness [26]. However, several other trypanosome cellular
systems, including the lamin [27], the kinetochore [28], and the endocytic pathway [29], exhibit
incomplete retention of metazoan machinery but have emerged as having alternate components,
rather than simple reduction. We suggest that this is also the case for gene expression.

From transcription to quality control and export
In opisthokonts, protein-coding RNAs are transcribed exclusively by RNA Pol II, with mRNA
export being initiated cotranscriptionally (Figure 1). Several protein factors associate with the
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nascent message to form ribonucleoprotein complexes (RNPs). RNA export is integrated with
mRNA biogenesis and processing; amongst these factors are several TREX complexes. TREX
is comprised of two different cohorts; THO components Tho2, Hpr1, Mft1, and Thp2 [30],
together with two TREX-specific components Sub2 and Yra1, which act as adaptors for
mRNA export proteins [31]. The THO/TREX complex mediates transcription elongation in
yeast, splicing of mRNAs in vertebrates, and cotranscriptional recruitment of the mRNA export
machinery (Figure 1) [30,32]. Beyond opisthokonts and plants, the evolutionary conservation of
THO/TREX complex proteins, their functions and pathways become more difficult to decipher.

The DEAD box helicase Sub2 (UAP56 in vertebrates) is the only evolutionarily conserved TREX-
complex protein and has been characterized in diverse protists, including Plasmodium, Toxo-
plasma, and trypanosomes [33–35], suggesting a very high level of conservation [33–36].
Silencing of Sub2 results in the accumulation of polyA mRNA in the nucleus of trypanosomes
and decreased translation [34,35]. Toxoplasma Sub2 is also heavily involved in export as disrup-
tion using CRISPR blocks mRNA export [33]. Additional TREX complex proteins are either so
diverged as to be undetectable or absent in trypanosome and Apicomplexa genomes [34,35].
Thus, our appreciation of the players and processes underlying mRNA processing, from the
point of transcription through to export to the cytoplasm, remains incomplete in protists, albeit
with the clear indication that Sub2 at least has conserved functions, and potentially with
backfilling replacing the absent TREX subunits [34,35]. What remains unclear is if this repre-
sents a secondary loss or later evolution of Sub2-interacting proteins, as recently demon-
strated in a proteomic study in the American trypanosome Trypanosoma cruzi, where several
kinetoplastid-specific proteins were found to be involved in RNA processing and splicing in
addition to more evolutionarily conserved factors [37]. Although these newly identified
kinetoplastid-specific factors may perform analogous functions to THO/TREX components,
they are yet to be functionally interrogated.

As a prelude to export in opisthokonts, Sub2 is displaced by the mRNA export factors Mex67
andMtr2. These remodeled complexes are now export competent, but pause at the nuclear bas-
ket and engage a quality control checkpoint. This is facilitated by the TREX2 complex, which is
tethered to the nuclear periphery via the nuclear basket Nups Mlp1/Mlp2 (Figures 1 and 2 and
Table 1) [38,39]. In this context it is relevant that Tpr, the vertebrate nuclear basket Nup, is not
simply a passive interaction platform for TREX2 but rather an integral part of the complex itself
whose disruption leads to abnormal transcription and export [40]. The TREX2 component
Sac3 provides a scaffold for Thp1, Sem1, Cdc31, and Sus1 [41]. Animal Sac3 differs from the
yeast ortholog in that animal Sac3 shuttles between sites of active transcription and the NPC
while binding directly to Mex67, thus facilitating intranuclear translocation of mRNPs from tran-
scription sites to the NPC in preparation for export [38,42].
Figure 1. Quick start guide to control of eukaryotic gene expression. (A) Steps in the standard model of transcription and translation. Above the arrow are the
processes taking place that may be regulated by one or more mechanism. Below the arrow are the molecules that encode biological information. Critically, all of these
steps, with the exception of control of transcription (in red), are common between trypanosomes and other eukaryotes. (B) Highly simplified view of mRNA maturation
and nuclear export pathways. Multiple complexes are shown in shades of blue that are responsible for the splicing, folding, and processing of mRNAs, and which are
associated with the nuclear pore complex (NPC). Precise distinctions between these complexes is difficult, as the composition of complexes varies dynamically, with
many proteins being shared and/or acting to link complexes. Association with the NPC, by the transcription export (TREX) complexes, is a critical aspect of the export
process. (C) Simplified scheme for trypanosome polycistronic transcription. Top is an example chromosomal region containing several protein coding sequences, with
arrows showing direction of RNA Pol II transcription, and illustrating convergent and divergent strand switch regions (SSRs). The leftmost cistron is transcribed as a
single contiguous primary RNA transcript as illustrated in Figure 1C, and then resolved into individual mRNAs following trans-splicing of a 5′ spliced leader (SL) and
polyadenylation. Turnover and other processes regulate the copy number of the mRNA, and additional mechanisms, including translational efficiency also contribute to
differential protein levels. All of these processes are discussed in detail in the text. Abbreviations: EJC, exon junction complex; QC, quality control; PABP, polyA-binding
protein; SAGA, Spt-Ada-Gcn5 acetyltransferase.
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Figure 2. An illustration of the differences between protein and mRNA export in opisthokonts versus trypanosomes. (A) A comparison of the nuclear pore
complex (NPC) structure in opisthokonts versus trypanosomes. The arrangement of the major subcomplexes of the NPC are highlighted. The membrane, inner, and outer
rings are structural components that act as a scaffold for the nuclear basket and phenylalanine glycine (FG) repeat containing nucleoporins (Nups) that maintain the
permeability barrier of the NPC. The NPC in opisthokonts differs from that in trypanosomes in having a well-recognized mRNA export platform on the cytoplasmic side
of the NPC which is evolutionarily divergent in trypanosomes. In addition, the nuclear basket is smaller in trypanosomes. and the mechanism of anchoring the NPC to
the nuclear envelope is also divergent. (B) A comparison of transcription and export between opisthokonts and trypanosomes. Opisthokonts have individual RNA Pol II
promoters for each gene while trypanosomes have single RNA Pol II-like promoter elements at the beginning of each polycistronic transcription unit comprised of
several nonfunctionally related tandem genes. Individual mRNAs from each polycistronic transcription unit are resolved by trans-splicing. mRNA export in opisthokonts
relies on an ATP-dependent DEAD box helicase [ribonucleoprotein (RNP) modelers] to drive directionality of mRNA transport from the nucleus into the cytoplasm. In
trypanosomes, it has been postulated that mRNA export is dependent on the GTPase Ran, a radical departure from opisthokonts, concomitant with a lack of an
obvious dedicated cytoplasmic mRNA export platform.
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TREX2 functions as a staging post for both mRNA processing and for export proteins to interact
and facilitate association and repositioning of actively transcribed genes to NPCs in conjunction
with the transcription coactivator SAGA (Spt-Ada-Gcn5 acetyltransferase) [43] (Figure 1B). The
SAGA complex is comprised of ~20 subunits and, due to the presence of Gcn5, was initially con-
sidered as a histone acetyltransferase. However, SAGA also contains a histone deubiquitinase
and subunits interacting with transcriptional activators and the general transcription machinery,
indicating coordination of a broad range of functions [44]. Just as most THO/TREX components
are either cryptic or absent from trypanosomes, there is scant evidence for SAGA components,
858 Trends in Parasitology, October 2022, Vol. 38, No. 10
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Table 1. The NPC components involved in mRNA exporta,b

Major secondary structures Trypanosomes Yeast Vertebrates NPC subcomplex

β-propeller, coiled coil TbNup76 Nup82 Nup88 Cytoplasmic (opisthokonts), possibly cytoplasmic and
nucleoplasmic (trypanosomes)

FG-repeats, putative ZnFs TbNup149 – – Part of the TbNup76 complex

FG-repeats TbNup140 – –

α-solenoid (tryps only), FG-repeats TbNup158d Nup116c/Nup100c Nup98 Cytoplasmic and nucleoplasmic, and also Nup82
complex (Yeast)

Coiled coil, FG-repeats TbNup62 Nsp1 Nup62 Inner ring and cytoplasmic Nup82/88 complex
(inner ring only in trypanosomes)

β-propeller, FG-repeats, coiled coil – Nup159 Nup214 Cytoplasmic – Nup82/88 complex

FG-repeats – Nup42 Nlp1

Auxiliary factors – Dbp5 DDX19 Docks on the Nup82/88 complex
(unknown in trypanosomes)

– Gle1 Gle1

TbGle2 Gle2 Rae1

IP6b IP6 IP6

FG-repeats, ZnFs (Nup153 only) – Nup60c/Nup1c Nup153 Nucleoplasmic

FG-repeats – Nup2 Nup50

Coiled coil TbNup110 (110 kDa) – – Nuclear basket

TbNup92 (92 kDa) – –

– Mlp1 (218 kDa) TPR (267 kDa)

– Mlp2 (195 kDa) –

aAbbreviation: bIP6, inositol hexakisphosphate.
bA comparison of the components of the mRNA export platform between trypanosomes and opisthokonts. Trypanosomes have a Nup82 ortholog but lack several
components of the NPC mRNA export platform as represented in most taxa. Instead, they have species-specific proteins that may reflect an unusual mode of gene
regulation. Additionally, trypanosomes have different nuclear basket proteins that are half the molecular weight of those of opisthokonts.
cRepresents yeast-specific gene duplications for which there is a single ortholog in other lineages.
dTbNup158 orthologs are represented as two separate polypeptides in most eukaryotes, with an N-terminal FG-repeat and a C-terminal α-solenoid region that are auto-
proteolyzed into two distinct proteins. TbNup158 is a single protein containing both domains.
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and the recent T. cruzi immuno-isolation proteomic study amongst others supports the apparent
absence of several canonical orthologs of SAGA components [37].

Thus, it is possible that trypanosomes have a wholly divergent system for processing mRNA,
supported by a considerable cohort of kinetoplastid-specific proteins interacting with an evolu-
tionarily preserved Sub2 and other conserved components of the mRNA processing system.
Indeed, evidence suggests a tightly coupled system stretching from transcription to translation,
supported by evidence that trypanosomes can initiate mRNA export cotranscriptionally [45]. Sur-
prisingly, there is no quality control checkpoint at the trypanosome NPC prior to export of mRNA
through the NPC in trypanosomes [40]. Blocking trans-splicing, and thus faithful resolution of
individual mRNAs from polycistronic mRNAs, does not initiate a ‘pause’ at the NPC, instead
allowing export of nonspliced, nonresolved mRNAs [45].

Notably, trypanosomes have significant species-specific differences in NPC architecture which
are focused mainly around the mRNA export machinery, especially the nuclear basket and cyto-
plasmic mRNA export platforms [19,20,46]. The nuclear basket proteins Tpr and Mlp1/Mlp2 in
opisthokonts respectively range from 200 to 270 kDa [47–49], but in trypanosomes these are
represented by two proteins of 92 kDa and 110 kDa, suggesting significant evolutionary diver-
gence of this important NPC subcomplex (Table 1) [19,20,46]. Unlike other nuclear basket
Trends in Parasitology, October 2022, Vol. 38, No. 10 859
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Nups, TbNup92 uniquely has a C-terminal BRCT domain; however, it intimately associates with
the mitotic spindle and spindle organizer at mitosis, and is a functional analog of yeast Mlp2 [50],
which similarly relocates to spindle organizers in a cell-cycle-dependent manner [46,50].
TbNup110 is essential for cellular growth in bloodstream form of T. brucei [51] and, analogous
to Mlp1, extends circa 40 nm into the nucleoplasm from the NPC [20]. However, the function
of TbNup110 in quality control of RNA export is unexplored.

mRNA transport factors in canonical organisms
After pausing at the nuclear basket, mRNA export through the NPC in opisthokonts occurs in a
matter of milliseconds. This transport is mediated by non-karyopherin transport factors Mex67 and
Mtr2 [52,53]. Mex67 is a multidomain protein with a cargo-binding domain consisting of an RNA rec-
ognition motif, a leucine-rich repeat (LRR) which mediates interactions with RNA and auxiliary RNA
processing proteins, an NPC-binding domain consisting of an NTF2 domain required to form a
heterodimer with Mtr2, and a C-terminal ubiquitin-associated (UBA) domain mediating interactions
with FG-Nups [54,55]. The final steps ofmRNA export and remodeling in opisthokonts are performed
by Nups located on the cytoplasmic face of the NPC [15,17,56] (Figure 2 and Table 1).

The main component of the cytoplasmic mRNA export platform in yeast is the Nup82 complex, a
tetrameric assembly comprised of Nup82, Nup159, Nsp1, and Dyn2 (dynein light chain) [15].
Nup82 and Dyn2 are purely structural proteins, while Nsp1 and Nup159 also carry FG repeats.
The DEAD box RNA helicase Dbp5 and an RNA export mediator Gle1 associate with Nup159
and together they remodel mRNPs exiting the NPC in an ATP-dependent manner [16,18,56–
61]. This allows the Mex67–Mtr2 complex to disengage from export cargo and recycle into the
nucleus, providing both directionality and energy to drive mRNA export [52,53,62,63].

Trypanosomes lack the canonical NPC mRNA export platform
Trypanosomes have orthologs of most of the major transport factors present in opisthokonts
[19,64], suggesting at some level a high degree of evolutionary conservation. As such it is pre-
sumed (albeit unproven) that most of these homologs function as in higher eukaryotes. Indeed,
the main mRNA export factor, Mex67, and its partner, Mtr2, are conserved [65–67]. Given this,
it is significant to find major differences in mRNA transport mechanisms associated with the try-
panosome NPC [20]. Remarkably, orthologs of yeast Nup159, Gle1, and Dbp5 are absent from
the trypanosome NPC, the key components of the animal and fungal cytoplasmic RNA export
platform [15–18,56,57,59,68].

In yeast the Nup82 complex is anchored over the central NPC channel by the outer ring complex
[15,69], an asymmetric position crucial for driving unidirectional ATP-dependent mRNA export
[70,71]. Nup159 can be distinguished from all other FG-Nups due to the presence of a unique
N-terminal β-propeller, that acts as an interaction platform for Dbp5 (Table 1) [17]. TbNup76
appears to be the trypanosome ortholog of Nup82 and forms a complex with two large FG-Nups,
TbNup140, and TbNup149 (Figure 3). The genes encoding the two proteins are adjacent in
kinetoplastid genomes and separated by an unusually small (122 bp) intergenic region [19].
Neither TbNup140 nor TbNup149 has a β-propeller, consistent with the absence of Dbp5
from trypanosomes [18]. TbNup140 contains ~100 FG dipeptides spanning ~120 kDa, with
an N-terminal 20 kDa coiled-coil motif acting as the NPC anchor. TbNup149 has considerably
fewer FG-Nups but is built from three repetitive segments in Trypanosoma brucei (Figure 3). The
ortholog is larger in T. cruzi and Leishmania major (170 kDa and 382 kDa respectively). The standout
features of TbNup149 are three zinc-finger (ZF)-like motifs that are well conserved between the
kinetoplastids [20] (Figure 3). Hence, the entire architecture of this NPC subcomplex is remodeled to
a remarkable degree and precludes the presence of a canonical mRNA export mechanism.
860 Trends in Parasitology, October 2022, Vol. 38, No. 10
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Figure 3. Components of the TbNup76 complex, the trypanosome mRNA export platform. The TbNup76
complex comprises the β-propeller, coiled-coil protein, Nup76, the structural ortholog of Nup82 in yeast (Saccharomyces
cerevisiae Nup82 or ScNup82) and verterbrate Nup82 (Homo sapiens Nup88 or HsNup88). TbNup76 forms a complex with two
large phenylalanine glycine (FG)-nucleoporins (Nups) with no obvious orthologs in opisthokonts. TbNup149 appears to have three
putative zinc fingers (Zn2+).
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Significantly, this configuration is restricted to trypanosomes as Euglena gracilis, which has a Dbp5
ortholog, appears to have a more conventional mRNA export mechanism, similar to opisthokonts
[72]. The absence of the Nup159–Dbp5 system removes the ATP-mediated steps from mRNA ex-
port, which asks the question of howmRNAexport is powered andmRNPs remodeled in the absence
of ATP as an energy source.

Typically, nucleocytoplasmic transport is mediated by two classes of soluble protein, both of which
are characterized by their specific affinity for the NPC, allowing them to rapidly transit themselves
and their cognate cargoes between the nucleoplasm and cytoplasm. The first class contains
karyopherins, responsible for the import and export of proteins and the export of noncoding RNAs
[rRNA, miRNA, tRNA, and small nucleolar (sno)RNA]. The second class contains non-karyopherin
nuclear transport factor 2 (NTF2) type transport factors, which import Ran (NTF2 itself) and export
mRNA (Mex67 with its heterodimeric partner, Mtr2) [73]. A RanGTP/GDP gradient represents the
vectoral driver of nucleocytoplasmic transport [73]. RanGTP is involved in the export of proteins
from the nucleus through cooperative interactions with exportins (Figure 2). Once in the cytoplasm,
Ran-bound GTP is rapidly hydrolyzed to RanGDP through interaction with Ran GTPase-activating
protein (RanGAP) and the cofactor Ran-binding protein 1 (RanBP1). A conformational change allows
Ran to be released from the exportin complex and to bind NTF2, whose major purpose is to actively
import RanGDP back into the nucleus to be reactivated into RanGTP, thus maintaining the gradient.
By contrast, directionality of bulk mRNA export in opisthokonts is independent of Ran, relying instead
on the ATP-dependent Dbp5 path (Figure 2).

Remarkably, immunoisolation of trypanosome Mex67 recovers stoichiometric quantities of Ran,
RanBP1, and a putative Ran GTPase-activating protein, even though it is well established that
neither yeast nor vertebrate Mex67 or Mtr2 can bind Ran [20,74,75]. Thus, the interaction of try-
panosome Mex67–Mtr2 with Ran is highly atypical. Moreover, once on the cytoplasmic side of
the NPC, it is likely that as-yet unknown factors interact with the emerging mRNA [45]. This,
coupled with the absence of discernible orthologs of TREX2 complex components suggests
that the trypanosome nuclear basket cannot function analogously to opisthokonts. It is, however,
interesting that unsplicedmRNA is tethered to RNA granules peripheral to the cytoplasmic side of
the NPC, hinting at a mechanism for quality control of trypanosome mRNA processing [37].
Trends in Parasitology, October 2022, Vol. 38, No. 10 861
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Increased complexity of mRNA export factors in metazoa and trypanosomes
The frequency of alternative splicing increased with diversification of cell types in multicellular
organisms [76]. Multicellular organisms (metazoa) also have additional Mex67 variants (so
named nuclear exchange factor or NXF in metazoa), some of which are themselves generated
as splice variants and exhibit tissue specificity [55,77–80]. NXF1 is highly expressed in all
mammalian tissues, whereas the other paralogs in humans, mice, fruit flies, and nematodes
tend to be expressed at lower levels, are tissue-specific and/or developmentally regulated [55].
Humans and mice have at least four NXF gene products: NXF1,2,3, and 5 in humans and
NXF1,2,3, and 7 in mice. NXF1 and NXF2 predominantly localize to the nucleoplasm and display
mRNA export activities, while NXF3, NXF5, and NXF7 are mainly cytoplasmic, highlighting
potential functional differences [55,81]. NXF2 is expressed in testes and neurons [82,83], while
NXF3 is expressed mainly in testes [77]. NXF3 lacks the C-terminal UBA domain required for
direct interactions with the NPC [54,84], instead having a novel nuclear export signal that allows
it to bind the karyopherin nuclear export factor XPO1 and so compensates in cis for loss of the
canonical NPC targeting domain [77,85]. Last, NXF5 and NXF7 localize to neurons and associate
with translating ribosomes, stress granules, and P-bodies [80,82,86–88]. Fruit flies also have four
NXFs: NXF1,2,3 and 4, of which only NXF1 is essential and responsible for mRNA export [89].
This suggests that NXF1 is the global mRNA exporter in metazoa while NXF2, NXF3, NXF5,
and NXF7 have tissue-specific functions, some of which remain cryptic. Importantly, NXF1, 2,
and 3 form heterodimers with NXT1 (nuclear transport factor 2-like export factor 1), the metazoan
ortholog of Mtr2, which facilitates NPC localization and translocation [52,79,84,90–92].

Multiple trypanosome paralogs of Mex67 have also recently been identified and characterized
[93]. Unlike metazoa, these paralogs are not relatively minor splice variants, but encoded by sep-
arate genes, are structurally diverse and have discrete functions. Immunoisolation of TbMtr2
demonstrated an interaction with TbMex67, which has been well characterized; TbMex67 has
a noncanonical N-terminal CCCH ZF that is essential and appears, thus far, unique to trypano-
somes [67]. Additionally, TbMtr2 interacts with TbMex67b and TbMex67-like or TbMex67L. All
three have a NTF2-like domain in addition to the typical LRR domains found in Mex67, while
TbMex67 also has a C-terminal UBA. Significantly, neither TbMex67b nor TbMex67L retain the
UBA domain, and while not unique to trypanosomes (mammalian also NXF3 lacks this domain),
this indicates a distinct modality separating TbMex67 from TbMex67b/TbMex67L [54,84].
Despite this, Mex67b still interacts with the trypanosome splicing machinery [37]. TbMex67L is
considerably larger than TbMex67 and TbMex67b due to an extended N-terminal domain.

The genes encoding TbMex67 and TbMex67b are near to each other on chromosome 11,
indicative of a gene duplication event. Moreover, this chromosomal region, including the syntenic
arrangement of TbMex67 and TbMex67b genes, is conserved throughout the kinetoplastids, and
phylogenetic reconstruction indicates that TbMex67 and TbMex67b are more closely related
than they are to Mex67L. Orthologs of TbMex67 and TbMex67b are recovered from all
kinetoplastids, including the free-living bodonid, Bodo saltans, but TbMex67L is not, albeit
retaining a presence within all other kinetoplastids, indicating a more recent addition to the reper-
toire than diversification of TbMex67/TbMex67b. TbMex67 and TbMex67b localize to the nucle-
olus as well as to NPCs at the NE periphery, consistent with roles in RNA export, while TbMex67L
localizes exclusively to the perinucleolar foci in a manner reminiscent of Pol I [94], suggestive of a
role specific to rRNA processing. Affinity capture of TbMex67 and TbMex67b coisolates NPC
components while TbMex67L does not, instead coisolating with ribosome biogenesis proteins
and ribosomal proteins [93]. Thus, trypanosomes are the first unicellular organisms to have mul-
tiple orthologs of Mex67 identified, two of which appear to be involved in RNA export and one
with a specialized role at the nucleolus and ribosomal biosynthesis.
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Mex67 is also involved in the transport of certain noncoding RNA
In opisthokonts, Mex67/Mtr2 function with XPO1, the most abundant export factor that mediates
rRNA export, with involvement in 60S and 40S ribosomal subunits and 5S rRNA [95,96]. These
additional Mex67 activities appear conserved in trypanosomes, with export of 60S and 40S sub-
units partially dependent on TbMex67 and TbMtr2. Defects in processing 60S rRNA and aberra-
tions in ribosome assembly occur after silencing [97,98], while TbMex67/TbMtr2 interacts with
protein components of the 5S RNP [97,98]. TbMex67 and TbMtr2 are also involved in tRNA
export [99], a role fulfilled by exportin-T (XPOT) in opisthokonts [73]. Silencing XPOT does not
perturb tRNA export in trypanosomes [99], but rather knockdown of TbMex67 (partially) and
TbMtr2 (fully) blocks tRNA export [99]. As only TbMtr2 fully blocks tRNA translocation, this
suggests roles for at least one of the additional TbMex67 paralogs in this pathway. It was also
recently shown that silencing of two inner ring FG-Nups TbNup62 (Table 1) and TbNup53a
directly affected tRNA export, suggesting that these two specific Nups are part of the tRNA
export pathway in trypanosomes [100].

Evolutionary divergence in mRNA export mechanisms
Despite making strides in deciphering trypanosome RNA export pathways, we have neither a
clear mechanistic paradigm nor an understanding of how the various complexes coordinate.
eIF4AIII is a conserved nucleocytoplasmic shuttling RNA DEAD-box helicase and in trypano-
somes depends on TbMex67b for function in RNA export [101]. Although eIF4AIII locates at
the cytoplasmic side of trypanosome NPCs, it is also present in the nucleoplasm and cytoplasm,
and knockdown of TbMex67b leads to nuclear accumulation of eIF4AIII, indicating a functional
interaction [101]. Further, DRBD18, an essential and abundant T. brucei RNA-binding protein
associates with TbMex67 and TbMtr2 in vivo, probably through interactions with TbMtr2 [102].
RNAi knockdown of DRBD18 leads to partial nuclear retention of mRNA and an export block
of a subset of mRNAs, but has no effect on the export of tRNA [102].

Additional complexity in trypanosomes involves XPO1, which exports only some mRNAs in
trypanosomes [103]. Further, leptomycin B treatment of T. cruzi, an XPO1 inhibitor, leads to a
partial accumulation of a subset of mRNAs, specifically those encoding HSP70, the RNA-binding
proteins TcUBP1/TcUBP2, and polyA-binding protein PABP1 [103]. XPO1 is involved in the
export of some mRNAs in vertebrates, as well as those viral RNAs bypassing the surveillance
system that prevents normal export of unspliced RNAs. Lacking an RNA-binding domain itself,
XPO1 relies on interactions with additional proteins to export different classes of mRNA, for
example, human antigen R (HuR) and eIF4E- and NXF3-dependent mRNA export [104–108].
Whether such adaptors are present in trypanosomes with similar functions remains to be
established, but the observation of only partial blockade to mRNA export following XPO1
silencing in trypanosomes suggests that this is highly likely.

In fungi Crm1, the ortholog of vertebrate XPO1, alsomediates export of the large ribosomal subunit, a
pathway that depends on Nmd3, an adaptor protein that recruits XPO1 to the 60S subunit in the
nucleus in preparation for transport [109,110]. Nmd3 is extremely well conserved and present in
both eukaryotes and archaea [111], and TbNmd3 regulates both mRNA and rRNA nuclear export
via an XPO1-linked pathway [112]. Silencing TbNmd3 leads to upregulation of procyclin-associated
gene transcripts [112] which are transcribed by RNA Pol I [113]. Interestingly, silencing or inhibiting
TbXPO1 with leptomycin B, or silencing TbMex67, has a similar phenotype. Considering the
evolutionarily conserved relationship between Nmd3 and XPO1, this provides further support for
divergence as procyclin-associated genes are mRNAs and not rRNAs, albeit Pol I transcripts,
suggesting crossover in Nmd3 function between mRNA and rRNA metabolism in trypanosomes.
Presently, we have snapshots of several processes, but lack a holistic view.
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Outstanding questions
What is the detailed architecture of the
trypanosomatid NPC, and how does
this impact RNA export mechanisms?

How do the multiple Mex67 paralogs
act in concert with the GTPase Ran to
control RNA export? And what is the
mechanism of their specificity?

What are the functions of the lineage-
specific proteins implicated within
mRNA export?

How do interactions between chromatin
and the divergent trypanosome nuclear
basket mediate mRNA processing,
activation or repression of specific
genes?
Does divergence in mRNA metabolism provide therapeutic opportunities?
Commonwisdom suggests that a route to specificity for developing therapeutics against trypano-
somes can be achieved via targeting their divergent mechanisms. Given both the essentiality of
mRNA processing and – as discussed earlier – significant evidence for divergence, this should be a
fertile space for drug discovery. One exciting new example of such a drug is acosiborole, a new
therapeutic entering the pipeline for treatment of trypanosomiasis. The target of this drug is
CPSF73, a component of the mRNA maturation machinery. Specificity apparently arises from
minor divergences within the site in CPSF73 that acosiborole binds [114,115]. Despite this,
CPSF73 arose in archaea, indicating an origin predating eukaryogenesis, and is generally very highly
conserved across the eukaryotes. Clearly then, mechanistic divergence is not a prerequisite for
therapeutic intervention; targeting of mRNA export indeed offers considerable therapeutic potential.

Concluding remarks
Eukaryotic gene expression involves multiple near-ubiquitous processes, many of which have
been inherited directly from prokaryotes. Additionally species-specific proteins and pathways
are involved that likely arose as adaptations to the specific biology of each organism. For trypano-
somes, current understanding has indicated those areas where mRNA processing/export path-
ways are clearly modified, and which have probably arisen due to polycistronic transcription and
the consequences of that mode of gene expression, though many aspects of these processes
remain poorly understood (see Outstanding questions). mRNA export and processing are Ran-
dependent in trypanosomes, representing a fundamental distinction to how the pathways are
controlled compared with the canonical pathways of opisthokonts and most other lineages. It
is presently unclear if Ran-dependent RNA export represents the ancestral state, which would
unite all export under a Ran umbrella, or arose during evolution of the Discoba, the trypanosome
lineage. Multiple Mex67 paralogs likewise could represent a basal configuration, but the absence
of the canonical cytoplasmic mRNA export/QC platform is clearly a secondary loss. Given many
additional examples of highly distinct nuclear functions restricted to kinetoplastids, including the
lamina, nuclear basket and kinetochores, together with novel proteins interacting withmRNA pro-
cessing pathways, how these divergent systems integrate will provide significant insights into the
origins of the nucleus and eukaryogenesis itself.
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