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The kinetoplastida and their close relatives are unicellular organisms prevalent within the bio-

sphere and important for significant impacts on global health, economy and ecosystems. They

are, under most models, an early branching lineage. Individual species adapted to highly

diverse environments by adopting complex life styles; parasitic species can infect a wide

range of eukaryotic hosts, while many relatives are free-living and some autotrophic from

acquiring a plastid for photosynthesis. Adaptation is especially evident in the evolution of

kinetoplastid cell surface architecture and is supported by endomembrane trafficking and

serves as a platform for interaction with its environment. Here we summarize and discuss

recent genomic and experimental studies of the protein trafficking system in kinetoplastids,

with focus on the composition and function of the surface as well as mechanisms for con-

structing, maintaining and regulating the cell surface proteome. We hope this provides a

broad view of how protein trafficking contributes to the intricate and dynamic host-parasite

interfaces that are critical for successful environmental adaptation of this highly important

lineage.
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1 | INTRODUCTION

The kinetoplastida are among a group of highly adaptive organ-

isms, with an extraordinary wide spectrum of habitats ranging

from fresh water to parasites of multi-cellular and unicellular hosts

(Table 1, Figure 1A). This astonishing capacity for adaptation is

greatly reflected in the complex lifestyles developed by individual

species, which exhibit an array of morphological changes during

life cycle transitions. Along with metabolic adaption, changes in

cell architecture play critical roles in establishing such rich biologi-

cal diversity. Here we consider insights from recent genome anno-

tations and molecular cell biology to propose an atlas for

understanding the evolution of trafficking and surface molecules

of kinetoplastids in the context of adaption to their individual

unique niches.

2 | TAXONOMY, PARASITISM AND
LIFESTYLES

Kinetoplastids are members of the Euglenazoa, within the Excavata

supergroup. With numerous lineage-specific features (Figure 1A), they

are among the most divergent taxa from their animal and plant hosts.1

Significantly, most known kinetoplastids are parasitic, and it is likely that

parasitism evolved within Euglenozoa more than once as a result of adap-

tation.2,3 The most familiar examples are the trypanosomes and Leish-

mania in the order Trypanosomatida. As causative agents of high-profile

human diseases, considerable effort has been dedicated towards diseases

management, treatment and understanding of fundamental biology.4

Most of the studied parasitic kinetoplastids dwell in two hosts

through their life cycles. This complex digenous life style requires sig-

nificant alterations to cellular functions to facilitate host transition and

environmental adaptation. Embedded within the Trypanosomatida,
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and closely related to the Leishmanias, are Crithidia and Phytomonas

infecting insects and plants, respectively.5,6 Free-living bodonids are

less well-studied but nearly ubiquitously present in aquatic environ-

ments and soil, and form the dominant kinetoplastids in the global

oceans.7 Their ecological significance and full impact to agriculture is

almost certainly currently underestimated.

Each trypanosomatid lineage has a unique cell surface. It is of

considerable importance to obtain molecular details of the specific

architectural compositions and functional contributions for these dis-

tinct surfaces as they are involved in host cell recognition, cell inva-

sion and evasion of host defense systems in mammalian, arthropod

and plant hosts. The endomembrane trafficking system builds the sur-

face architecture and supports the complicated and dynamic functions

ranging from macromolecule secretion, uptake of nutrients and other

materials from the environment, to detection and transduction of

external stimuli. Therefore, a systematic understanding of how the

endomembrane system in trypanosomatids differentiates between lin-

eages has the 3-fold potential of providing unique insights into univer-

sal functionality, pathogenic mechanisms and evolutionary change.

African and American trypanosomes (Trypanosoma brucei and Trypa-

nosoma cruzi, respectively) have surfaces dominated by glycosylphospha-

tidylinositol or GPI-anchored proteins, a common feature among

kinetoplastids. Remaining extracellular throughout their entire lifecycle,

T. brucei and close relatives evolved a highly sophisticated system involv-

ing antigenic variation and antibody clearance via high flux endocytosis8,9

to facilitate survival in the host. In the mammalian stage, the surface of

T. brucei is dominated by the variant surface glycoprotein (VSG) and is

also decorated by a number of lower abundance trans-membrane and

TABLE 1 Summary of the diversity of lifestyles of kinetoplastids and relatives. Kinetoplastids are grouped according to phylogeny as in Figure 1.
Major cell surface proteins of many newly sequenced kinetoplastids, especially the bodonids and some cruzi group members as well as outgroup
species Naegleria gruberi and Euglena gracilis are as yet not described in any detail

Organism Host Vector Flagella Cell surface proteins Life style

N. gruberi Heterotroph N/A Multiple Unknown Free living

E. gracilis Auto
+heterotroph

N/A Two free Unknown Free living

Perkinsella Neoamoeba N/A 0 Unknown Intracellular parasite

Bodo saltans Heterotroph N/A Two free Unknown Free living

Trypanoplasma borreli Fish Leech Two free Unknown Extracellular,
bloodstream

Paratrypanosoma
confusum

Mosquito One free Unknown Extracellular

Paratrypanosoma serpens Plant Hemipteran
insects

One free gp63 Extracellular, phloem

P. EM1 Plant, symbiotic Hemipteran
insects

One free gp63 Extracellular, latex tubes

P. HART1 Plant Hemipteran
insects

One free gp63 Extracellular, phloem

Leishmania braziliensis Vertebrates Phlebotomine
sandfly

One free gp63, LPG; amastin Intracellular,
macrophages

Leishmania major Vertebrates Phlebotomine
sandfly

One free gp63, LPG; amastin Intracellular,
macrophages

Leishmania infantum Vertebrates Phlebotomine
sandfly

One free gp63, LPG; amastin Intracellular,
macrophages

Leishmania mexicana Vertebrates Phlebotomine
sandfly

One free gp63, LPG, amastin Intracellular,
macrophages

Leishmania donovani Vertebrates Phlebotomine
sandfly

One free gp63, LPG; amastin Intracellular,
macrophages

Trypanosoma cruzi Vertebrates Triatomine bugs One
attached

gp63, mucins, trans-sialidases;
amastin

Intracellular, many cell
types

Trypanosoma grayi Reptiles,
mammals

Tsetse fly One
attached

trans-sialidases Extracellular,
bloodstream

Trypanosoma theileri Mammals Ticks One
attached

Unknown Extracellular,
bloodstream

Trypanosoma carassii Fish Leech One
attached

Mucins Extracellular,
bloodstream

Trypanosoma vivax Mammals Tsetse fly One
attached

VSG; Procyclins Extracellular,
bloodstream

Trypanosoma congolense Mammals Tsetse fly One
attached

VSG; Procyclins Extracellular,
bloodstream

Trypanosoma brucei brucei Mammals Tsetse fly One
attached

VSG; Procyclins Extracellular,
bloodstream

Trypanosoma brucei
gambiense

Mammals Tsetse fly One
attached

VSG; Procyclins Extracellular,
bloodstream
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lineage-specific GPI-anchored proteins, several of which are likely recep-

tors for immune effectors.10,11 In the insect stage, T. brucei remodels its

entire surface, characterized by the replacement of VSGs by procyclins

that are important for persistence within the insect vector.12 In contrast,

T. cruzi invades the cells of its host, and its own surface is dominated by

mucin-like molecules that defend the parasite from immune and proteo-

lytic attack and are persistent through the life cycle.13 There are also mul-

tiple additional proteins present within the T. cruzimucin coat performing

adhesion functions during invasion of host cells.

Leishmania and the Phytomonads share the capacity of expressing a

dominant surface glycoconjugate, the lipophosphoglycan (LPG).14 LPG is

restricted to the insect stages of the life cycle and appears critical in insect

transmission and potentially initial entry into the mammalian host. A simi-

lar case of functionality is also found in Crithidia for an LPG-related macro-

molecule.15 Therefore, the GPI-anchor structure, conserved in LPG, VSG,

procyclins and mucins, provides a common mechanism for presenting the

macromolecules that are crucial for host interactions. Leishmania is also

capable of secretion of highly glycosylated proteins, facilitating transmis-

sion by the sandfly vector. Beyond the trypanosomatida, the free-living

Bodo saltans and Euglena gracilis both possess elements of the LPG bio-

synthetic pathway within their genomes.16,17 It is plausible that the para-

sitic species evolved from free-living forms to initially infect arthropods
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FIGURE 1 Genome, cellular and life cycle complexity in trypansomatids. A, Phylogenetic relationships between trypanosomes, Euglena and all
other eukaryotes. Red branches indicate parasitic lineages and black non-parasitic. To the right are columns indicating dominant surface
molecules, followed by taxonomic groupings. B, Specialization does not correlate with a reduced genome size. Approximate relative genome sizes
are plotted against an adaptation index, which is based on broad concepts of metabolic and environmental flexibility together with specialization
for specific hosts or niches. Organisms scoring higher on this index possess more complex lifecycles, hosts and immune evasion mechanisms
(complex surfaces and/or antigenic variation) compared with those lower on the index that are more generalists or, for Bodo saltans, free living.
Note the breaks in the abscissa as the genome of Trypanosoma cruzi is substantially larger than the other entries, and E. gracilis which is much
larger again. For both panels, organisms in red are monogenous (one host), blue or green digenous (two hosts, animal of plants, respectively) and
brown free living. Blue ovals are the kinetoplastid (small) and nucleus (large) while the light green ovals are chloroplast
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and only later acquired the ability to infect mammals or vascular plants,

and that LPG has a rather fundamental role that is unconnected to parasit-

ism per se, perhaps as a general protective molecule.

The majority of these organisms undergo developmental changes

critical for survival, maximal fitness or manipulation of host responses.

One fundamental aspect focuses on specific cohorts of surface macro-

molecules that are predominantly lipid anchored proteins of high abun-

dance and immense diversity. Therefore, individual organisms evolve

highly efficient systems for protein trafficking, modification and homeo-

stasis, which likely differentiate functionally in each organism to match

the unique demands for adapting each host. Are such modifications

observable in the genomes and/or cell biology of these organisms?

3 | AN ENDOMEMBRANE SYSTEM
SCULPTED BY REDUCTION

Over 100 kinetoplastida genomes have been sequenced, providing an

excellent opportunity to reconstruct transport pathways and predict

likely courses of evolution of membrane transport. Sampling is signifi-

cantly less dense beyond the Trypanosomatida, but is rapidly improv-

ing, allowing for more robust predictions.

Many of the major groups of trafficking proteins are paralogous,

including Rab and ARF GTPases, SNAREs, tethers, coats and adaptins.18

In general, functions are well conserved between orthologs across eukary-

otes, for example Rab7 is almost always functionally associated with late

endocytic/pre-lysosomal transport.19 This enables the prediction of trans-

port routes with an acceptable and useful level of accuracy, albeit precise

functions and interactions for specific proteins are somewhat harder to

ascertain. Another general tendency of trafficking systems is that paralog

numbers scale with genome size.20 This simple correlation holds for many

kinetoplastids and related euglenozoids (Figure 1B), but with notable

exceptions such as E. gracilis (belonging to class Euglenoidea) in which a

massive genome expansion is likely responsible for the abnormality.20

There is a remarkable similarity in the configuration of the endomembrane

system between the last kinetoplastid common ancestor (LKCA) and

E. gracilis based on the comparisons of their Rab and SNARE paralogs. For

several Rabs such as Rab1, Rab5, Rab7 and Rab11 in Euglena, multiple

paralogs are present suggesting a highly complex endocytic sorting, recy-

cling, ER exit and vacuolar system, consistent with its free-living and flexi-

ble lifestyle involving both autotrophy and heterotrophy. However, the

Rab cohort of kinetoplastids is reduced compared with the last eukaryotic

common ancestor (LECA): orthologs for Rab 8, 20, 22, 24, 50 and RabTi-

tan are absent from the LKCA (Figure 2), despite being present in LECA.21

By contrast the SNARE cohort is well retained, with Use1 and Syn17 as

the only paralogs lost in the LKCA.

At the opposite end of this spectrum lies Perkinsela, which

belongs to the group Prokinetoplastida (Figure 1). This curious organ-

ism is an intracellular inhabitant of Neoparamaeoba, a parasite of fish.

Ultrastructural images suggest a reduced cytoplasmic volume and pau-

city of distinguishable endomembrane compartments, raising the pos-

sibility that Perkinsela lacks much of the canonical organellar

apparatus.22 Another remarkable feature is a highly reduced nuclear

genome of less than 10 Mb, which encodes only three recognizable

Rab proteins, the smallest reported to date. These Rabs resemble

Rab1 and Rab2 and hence are likely involved in early exocytosis, beg-

ging the question of whether endocytic and intra-Golgi transports

occur in this organism, and if so how they are achieved.

Between these two extremes lie the Bodonids, with more conven-

tional genomes and predicted transport pathways. Bodo saltans possesses

35 SNARE- and 34 Rab/Rab-related genes. There are considerable

expansions of SNARE Syp7 (six copies), Rab7 (three copies) and

Rab32-like (five copies) genes, in addition to a cohort of lineage-specific

Rabs. Together these genomic compositions give rise to a highly

expanded endosomal/digestive apparatus and also suggest autophagic

pathways, all of which reflect needs to accommodate a variable food sup-

ply and survive periods of austerity in a free-living organism (Figure 3).

As trypanosomes gained the parasitic lifestyle, rather than an abrupt

collapse of pathways, there is stepwise evolution, with gradual loses and

very few gains. The vast majority of changes are simple paralog expan-

sions suggesting no radical rise of novel transport pathways in the lineage,

at least since the LKCA. Specially, loss of Rab24 and a tendency to lose

both Rab32 and Rab32-like proteins differentiate Typanosomatida from

the Bodonids. This feature indicates a decreased flexibility in survival dur-

ing lean times, likely as a result of adaption to a constant environment

provided by the host. A recent addition to the sequenced kinetoplastids is

Paratrypanosoma confusum, a parasite of mosquitos that diverged prior to

the evolution of digenous forms.23 This organism fits well within the gen-

eral trend, and possesses 26 Rabs, two copies each of Rab5, 11, 21 and

32 (MCF, unpublished analysis), in concordance with the close relationship

to Leishmania. Significantly P. confusum also contains 10 Rab proteins that

are sufficiently divergent to suggest novel functions.

Continued but distinct losses accompany the emergence of the Afri-

can trypanosome and Leishmania/Phytomonas clades: paralogs of post-

Golgi trafficking Rabs such as Rab11, Rab21, Rab32 and SNAREs fea-

tured by SynPM, Syx6, Npsn, VAMP7, suggest simplified endocytic and

recycling pathways. A similar case occurred in the parasitic Bodonid Try-

panoplasma borreli where Syx6, VAMP7, Rab32-like genes are lost. Inter-

estingly, the contrary occurs in the American trypanosome, T. cruzi, where

additional Rab11 and VAMP7 paralogs are potentially associated with

the contractile vacuole (CV).24 Overall, these data support the notion that

there are gradual evolutionary changes in parasitic species, represented

by Bodonida, Leishmania and Trypanosomatida, in which flexibility in

energy acquisition and possible austerity pathways are diminished .20

4 | EXOCYTOSIS: SIMPLICITY WITH
VARIATION

The fundamental configuration of the kinetoplastid secretory pathway

is canonical, with coatomer complexes I and II, tethers and the basic

exocytic Rab and SNARE complements all present. However, all trypa-

nosomatids are incapable of synthesizing Dol-P-Glc, the essential

donor for the terminal tri-a-glucosyl cap of the lipid-linked oligoman-

nosyl N-glycan precursors.25 Therefore, the quality control

(QC) system within the ER (endoplasmic reticulum) is reduced in com-

parison to other eukaryotes. Moreover, the oligosaccharyltransferase

complex is simplified to a single subunit configuration in trypano-

somes, but evolved as two functional paralogs in T. brucei, with a spec-

ification towards the residues flanking the asparagine critical for the
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N-glycan attachment.26 Furthermore, as cis-splicing is absent in try-

panosomes, these organisms lack a conventional ERAD (ER-associated

protein degradation) signaling system based on differential splicing

and activation of the protein kinase RNA-like endoplasmic reticulum

kinase (PERK) in the ER. This notion is also supported by the insensi-

tivity of trypanosomes to reagents that disrupt the canonical ERAD

pathways.27–30 However, a cohort of proteins involved in monitoring

protein processing and folding act on VSG and ISG proteins, suggest-

ing some noncanonical protein QC system operates in these

organisms.27,30,31

In other eukaryotes, the COP II complex and a group of receptors

termed p24 together facilitate protein exit from the ER, and with the

potential differentiation between GPI-anchored and trans-membrane

domain proteins. As the trypanosome surface is dominated by GPI-

anchored proteins (such as VSG in T. brucei), it is of significant interest

to understand if this process of selective ER exit is conserved. The

first clue is provided by the presence of eight p24 paralogs in the

T. brucei genome, suggesting the potential for considerable functional

diversity.32 In addition, there are two trypanosome specific proteins,

TbERAP32 and TbERAP18 at the ER, specifically associated with

monitoring the copy number of VSG targeted to the surface.33 Further

there is an extensive group of lineage-specific lectin-related proteins

from the invariant glycoprotein family, localized in the ER and poten-

tially involved in QC.34 In yeast, late steps in exocytosis require the

exocyst and octameric complex. Significantly, a novel subunit of exo-

cyst is present in trypanosomes and is conserved across the entire

lineage.35

Several paralogs of canonical exocytic SNAREs are present, with

up to two Qa-Syx1 and four R-VAMP7 as part of the canonical

Syx1-SNAP-25-VAMP7/Synaptobrevin complex in metazoa.20 Several

paralogs of Qb-Npsn and Qc-Syp7 are found across kinetoplastids,

with multiple copies in B. saltans and the American trypanosomes,

suggesting potential roles in trafficking to the plasma membrane as

described in plants.

5 | ENDOCYTOSIS: SUBSTITUTION,
REPLACEMENT AND REFINEMENT

In trypanosomes, surface maintenance and nutrient acquisition are

critical for successful immune evasion and survival within the host,

which are greatly dependent on the functions of the endocytic appa-

ratus. Interestingly, recent evidence indicates that some species of

extracellular trypanosomes (T. theileri and T. grayi)36–38 can survive

without VSG, suggesting more diverse mechanisms underlying the

immune evasion.

VSG is a homodimer with two GPI-anchors and is distributed over

the entire surface of the cell. A second GPI-anchored surface protein,

the transferrin receptor, is a heterodimer with only one subunit pos-

sessing a GPI-anchor and is retained within the flagellar pocket. This

has been proposed as a general model for localization of specific pro-

teins using “GPI-valance.”39 Tests of this model, including the produc-

tion of a dual GPI-anchored transferrin receptor, lend support, but

neither a molecular mechanism nor an exhaustive exploration of the

surface protein repertoire has been described. Interestingly, the

localization of VSG can be significantly altered by changes to the size

of the VSG ectodomain alone, which may suggest that membrane

anchoring has a lesser role compared with the architecture of the pro-

tein itself.40,41

Trypanosome endocytosis is exclusively dependent on clathrin-

mediated mechanisms that are set around a conserved functional core

but evolved distinctively. Many proteins described in animals and

fungi and required for both clathrin-dependent and independent path-

ways are absent from trypanosomes,42 including AP-5 adaptin, T-SET,

caveolin, multiple paralogs of ENTH/ANTH domain proteins, subunits

of the ESCRT complex and many more. However, the trypanosoma-

tids also possess several novel clathrin-associated proteins which play

significant roles in endocytosis and subcellular targeting, raising an

interesting possibility that a more basal system was present in the

LECA, upon which different lineages layered cohorts of proteins to

facilitate precise tailoring of function.42,43

6 | SORTING AND DYNAMIC PROTEIN
TURNOVER

The invariant surface glycoproteins (ISGs) have provided most data on

surface trans-membrane protein trafficking in trypanosomes. Among

this extensive family of type I membrane proteins, ISG75 facilitates

uptake of the classic trypanocide suramin and ISG65 has utility in

diagnostics.44,45 Notably, compared with the ISGs, VSG is turned over

rather slowly,46 indicating a selective sorting mechanism is operating.

Ubiquitylation is required for both uptake and degradation of ISGs,

and catalyzed by a ligase acting close to the site of uptake47 and is

regulated by at least two deubiquitinases, orthologs of Usp7 and

Vdu1. This suggests that ISG turnover is controlled by a rapid and sen-

sitive switch-like mechanism.

7 | LATE ENDOCYTIC SYSTEMS: MORE
REPLACEMENTS

Nearly all eukaryotic cells possess a lysosomal/vacuolar terminal com-

partment that serves as a site for protein degradation along with other

functions. Most kinetoplastids appear to have a single or very small

number of lysosomes. However, multiple Rab7, Qa-Syx7 and Qb-Vti-

like paralogs, generally associate with late endosomal transport, have

been identified in several kinetoplastids, suggesting multiple transport

routes to the lysosome.

Curiously, an essential type I trans-membrane protein, p67,

replaces the mammalian lysosomal LAMP in trypanosomes. p67 is

highly glycosylated and is likely transported via an AP-1-dependent

pathway that is responsible for maturation and progression through

the Golgi complex and to the lysosome.48,49 Protein analog replace-

ment is not unusual in trypanosomes and frequently does not give rise

to significant obvious functional alterations.50,51 Therefore, function is

possibly conserved between LAMP and p67. Additional lysosomal

proteins include the major facilitator superfamily of transporters and

mucolipin, a member of the transient receptor potential cation chan-

nel family, and which are fully conserved.
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In close proximity to the lysosome, a late endosome/multivesicu-

lar body is present, in which the ESCRT complex is responsible for rec-

ognition and processing of ubiquitylated proteins en route to the

lysosome, and is regulated by the Vps4 AAA-ATPase in a conserved

manner.52–54 However, the ESCRT 0 complex is absent and restricted

to animals and fungi52, raising an interesting question as to how ubi-

quitylated surface molecules, such as ISGs, are recognized, and pre-

sumably deubiquitylated prior to turnover.

8 | DEVIATIONS: THE CYTOSTOME AND CV

In almost all ciliates, phagocytosis takes place at the cytostome, a sur-

face organelle defined by a microtubule-supported funnel or groove.

Similar structures also exist in some Euglenoids and Dinoflagellates,55

although these are generally less elaborated. While feeding on bacte-

ria, B. saltans wafts prey into a cytostome,56 which is surrounded by

flap-like lips to collect current produced by a flagellum. The cytostome

is also present in Crithidia and the basal trypanosomatid P. confusum,23

but appears to have been lost in most trypanosomatids, where endo-

cytosis is generally restricted to the flagellar pocket. However, T. cruzi

epimastigotes possess a cytostome/cytopharynx-like organelle which

has an elongated stiletto-shaped structure formed by an invagination

of the plasma membrane along with sub-pellicular microtubules.57 The

structure contains a distinct membrane region that is separated from

the neighboring flagellar pocket by the preoral ridge and disappears

during metacyclogenesis.58

Another distinct feature in T. cruzi is the CV59 absent in African

trypanosomes and most Leishmania species, despite being described

in some early work on Leishmania.60 The CV is associated with

osmoregulation,61 serving as an internal membranous bladder, periodi-

cally filling with hypotonic liquid and being discharged by abrupt con-

traction through a pore in the plasma membrane. Acidocalcisomes,

storage organelles for cations that maintain high concentrations of

polyphosphates, also contribute to osmoregulation.62 In fact, these

two types of organelles are often associated with each other physi-

cally and functionally,63,64 and while maintaining their membrane indi-

vidual identities, are both subject to regulation by Rab8 (absent in all

kinetoplastids) and the exocyst complex.65 Additionally, there are

other lines of evidence that suggest selective trafficking of proteins

between CVs and the plasma membrane62; several trafficking and vac-

uolar fusion proteins were also observed in the T. cruzi CV including

SNARE VAMP7A, Rab11, Rab2 and Rab1.66–69

9 | INTERACTIONS OF THE TRAFFICKING
SYSTEM WITH THERAPEUTICS

It has recently emerged that several frontline drugs interact with the

trafficking system of African trypanosomes, either directly or indi-

rectly. Evolutionary divergence provides a key to selective toxicity

and hence therapeutic utility. For example, suramin, a drug first intro-

duced against trypanosomiasis in the first quarter of last century, is

recognized by ISG75, entering the cell via receptor-mediated endocy-

tosis, crossing the lysosomal membrane through a major facilitator

superfamily transporter.45,47 The presence of ISG75 and the high rate

of endocytosis in T. brucei accounts for the selective toxicity of

suramin.

Similar mechanisms also account for the cross-resistance to mel-

arsoprol and pentamidine, two further frontline therapeutics. There

are two transporters, P1 and P2, for purine uptake in T. brucei where

the de novo synthesis pathway is absent. Mutations in TbAT1, encod-

ing P2, gives rise to resistance to melarsoprol.70,71 P2 also contributes

to uptake of diamidines including pentamidine, which is primarily

dependent on aquaglyceroporin-2 (AQP2).45,72,73 Interestingly, in Afri-

can trypanosomes, AQP2 and AQP3 paralogs have ~90% amino acid

identity, indicating recent duplication. These two paralogs are differ-

entially located, with AQP2 to the flagellar pocket and AQP3 to the

entire plasma membrane, and the mutations in AQP2 are exclusively

associated with pentamidine sensitivity.74 Furthermore, uptake of

pentamidine is at least partially mediated by endocytosis as the affin-

ity of AQP2 to the drug is exceedingly high.75 This is thus a second

example of a specific and recent evolutionary event underpinning

selective drug sensitivity.

Exploitation of the unique aspects of the trypanosome surface

and trafficking has underpinned much of the classical therapeutic

arsenal, and recent applications of nanobodies (Nbs) have the poten-

tial to extend this in a rational manner. Nbs are derived from heavy

chain-only antibodies of camelids (see recent review76), and can be

utilized for delivery of drugs and toxins with high efficiency and speci-

ficity owing to their biochemical and physical features. An immuno-

toxin consisting of a nanobody coupled to serum trypanolytic factor

Apolipoprotein L-1 (ApoL-1) circumvented resistance dependent on

the ApoL-I-neutralizing serum resistance-associated (SRA) protein in

T. b. rhodesiense,77 while Nbs coupled to pentamidine not only

enhanced the potency of pentamidine but also overcome resistance

to pentamidine dependent on aquaglyceroporin-2 (AQP2).78 In addi-

tion to targeting, the killing mechanisms for Nbs also include directly

blocking the endocytotic pathway.79 Overall, identification of addi-

tional diverse surface antigens could greatly extend the potential of

Nbs as therapeutics.

10 | CONCLUSIONS

Among kinetoplastids, members of protein families associated with

delivery or removal of material from the cell surface exhibit the great-

est levels of divergence, while those mediating the early secretory/

biosynthetic pathways appear to be largely conserved. T. cruzi is the

only parasitic trypanosomatid that has retained both the cytostome

and CV, as well as possessing the largest cohort of Rab GTPases and

SNAREs from the LKCA. It is yet unclear if this retention has a role to

play in the wider range of cells that T. cruzi is able to infect in their

vertebrate hosts, compared with Leishmania spp which are restricted

to macrophages (see Table 1).

In all eukaryotic cells, intracellular transport pathways support a

wide spectrum of essential activities, and modifying these to suit dis-

tinct environments and lifestyles is a key aspect of cellular evolution

and adaptation. In the kinetoplastids, we have an exceptionally well

sampled group of unicellular organisms, with defined lifecycles and
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differentiation pathways. Considerable progress has been made in

understanding the detailed evolution of transport, and its potential for

exploitation for therapeutics. However, it is essential that we extend

these analyses to additional kinetoplastids. The large diversity of bod-

onids and their impact on the environment remains unexplored, and

P. confusum which appears to link the former with the more derived

parasitic trypanosomatids, may provide further insights into the evolu-

tion of parasitism in this lineage. The advent of CRISPR/Cas9 technol-

ogy for gene editing80 heralds the opportunity to rapidly dissect

trafficking and its impact to disease. It is exciting that these fascinating

organisms are becoming more and more tractable, and will provide

unique insights into basic cell biology and pathology in the years

to come.
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