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Abstract

Aquaglyceroporins (AQPs) are membrane proteins that function in osmoregulation and the
uptake of low molecular weight solutes, in particular glycerol and urea. The AQP family is
highly conserved, with two major subfamilies having arisen very early in prokaryote evolution
and retained by eukaryotes. A complex evolutionary history indicates multiple lineage-specific
expansions, losses and not uncommonly a complete loss. Consequently, the AQP family is
highly evolvable and has been associated with significant events in life on Earth. In the
African trypanosomes, a role for the AQP2 paralogue, in sensitivity to two chemotherapeutic
agents, pentamidine and melarsoprol, is well established, albeit with the mechanisms for cell
entry and resistance unclear until very recently. Here, we discuss AQP evolution, structure and
mechanisms by which AQPs impact drug sensitivity, suggesting that AQP2 stability is highly
sensitive to mutation while serving as the major uptake pathway for pentamidine.

Introduction

Aquaglyceroporins (AQPs) were first identified in the 1990s as membrane proteins with func-
tions in osmoregulation and the translocation of low molecular weight solutes, including gly-
cerol and urea (Preston et al., 1992). In humans, dysfunction is associated with multiple
cancers, kidney disease, oedema and other pathologies (King et al., 2004; Yool et al., 2010;
Shi et al., 2012). AQPs have an evolutionarily broad representation, being found in most
pro- and eukaryotic taxa and they retain a conserved architecture encompassing six hydropho-
bic domains. This structure is in turn derived through an internal duplication from a primor-
dial protein with three membrane-spanning helices, reflected in the presence of two NPA
(Asn-Pro-Ala) boxes that are involved in channel functions. Both the N- and C-termini
face the cytoplasm (Fig. 1) and sequence and architectural conservation indicates vertical des-
cent. Consequently, at least one mechanism for the control of water (and solute) passage across
biological membranes arose very early in the history of life (Ishibashi et al., 2020). However,
AQPs are not present in all taxa, for example the bacterial phyla Fibrobacteres and
Lentisphaerae, as well as some parasites and extremophiles. As AQPs can also be deleted in
some eukaryotes, for example immortalized mammalian cells and trypanosomatids (Jeacock
et al., 2017; Calvanese et al., 2018), it is clear that AQPs are non-essential, at least under
some circumstances. Control of osmolarity therefore likely utilizes additional mechanisms
in both pro- and eukaryotes. Below we will consider initially the evolution and origins of
AQP paralogues in protists and then the uncovering of drug-related functions in
trypanosomes.

Evolution, functions and roles in protists

The evolution of the AQP family is surprisingly complex and at least three subfamilies with
apparently distinct functions are recognized. These include AQPs able to translocate glycerol,
others that only uptake water and a final third group, the superAQPs, that arose late in evo-
lution. This latter subfamily is frequently intracellular, indicating a distinct function from the
other members of the AQP family, which are usually located at the surface in most cells
(Ishibashi et al., 2011), and are only found in metazoa. Significantly, the two ancestral
forms are clearly differentiated in all prokaryotes, indicating an origin dating back to an
early period of cellular life (Tong et al., 2019). The number of AQP paralogues in different
species is highly variable, with land plants and vertebrates having the largest repertoires, as
is the case for many other protein families.

There has been a considerable degree of expansion and contraction within specific lineages,
or ‘churning’, with the result that functional differentiation between paralogues is difficult to
predict (Ishibashi et al., 2020). Interestingly, in mussels (molluscs) there is evidence that
expansion of AQP paralogues correlates with freshwater colonization events and hence facili-
tating adaptation to decreased environmental salinity (Calcino et al., 2019). Similar events may
have facilitated tetrapod colonization of land habitats where desiccation is a considerable chal-
lenge (Finn et al., 2014) and underscores the importance of AQP evolution to life history.
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In unicellular eukaryotes the number of AQP paralogues is
comparatively small when compared with multicellular organisms
and it has been proposed that the numbers of AQP paralogues are
correlated somewhat with environmental complexity (von Bülow
and Beitz, 2015). Most protist AQPs appear to be the more per-
missive glycerol-translocating forms that facilitate the uptake of
solutes and waste compounds in addition to water. The free-living
amoeba Amoeba proteus expresses a single AQP that is associated
with the contractile vacuole (Nishihara et al., 2012), but by con-
trast there are four AQP paralogues in the social amoeba
Dictyostelium discoideum, two of which are constitutively
expressed and the remainder stage specific. Although there is evi-
dence for roles in differentiation, none of the D. discoideum AQPs
are exclusively water permeable and hence functions are not com-
pletely clear (Von Bülow et al., 2012). In the parasites
Plasmodium falciparum and Toxoplasma gondii, each have a sin-
gle AQP (Fig. 2) and this minimal repertoire may reflect intracel-
lular life cycles and a more constant environment, albeit with
considerable levels of complexity and differentiation events during
life cycle progression, particularly for P. falciparum.

Amongst the kinetoplastids, Leishmania major has five AQPs,
although only AQP1 has been studied in any detail. LmAQP1 is a
wide permeability form localized on the flagellum and regulated

by MAP kinase (Figarella et al., 2007; Mandal et al., 2012;
Sharma et al., 2015). The remaining L. major AQPs are less
well uncharacterized, but at the sequence level more closely
resemble the plant tonoplast intrinsic protein (TIP) AQP subclass.
Four of the five AQP genes in L. donovani retain canonical gating
motifs, but in one paralogue this is mutated to NPM-NPA. All
four of the conventional AQPs are suggested as intracellular as
is the case for the TIP AQPs of plants, but significantly
LdAQP1 is likely to permit translocation of large solutes (Biyani
et al., 2011). Antimonial-containing drugs remain a first line
treatment against Leishmania in many parts of the world (Field
et al., 2017) and in laboratory derived strains of Leishmania mex-
icana AQP1 can restore antimonial uptake to resistant cells
(Marquis et al., 2005). No obvious genome level changes to
gene copy number or sequence accompany resistance but is
potentially a post-transcriptional modulation of AQP1 mRNA
level. Changes to expression of AQP1 have been demonstrated
in multiple species where resistance was derived in the laboratory
(Lin et al., 2008; Barrera et al., 2017). However, it is also clear that
there is a less compelling case for association of altered AQP1
expression and drug resistance in clinical isolates.

The American trypanosome, Trypanosoma cruzi also has four
TIP-like AQPs, representing the entire repertoire in that organism
and these are associated with the contractile vacuole and acidocal-
cisomes (Montalvetti et al., 2004). Trypanosoma brucei has three
AQPs; AQP1 is shared with other kinetoplastida, while AQP2 and
AQP3 arose from a recent gene duplication in the African tryp-
anosome lineage and remain contiguous.

In addition to interactions between trans-membrane domains,
two major selectivity filters restrict the molecular weights and
properties of the solutes being translocated by AQPs and that
can effectively pass through the central pore; these are the ar/R
and NPA/NPA motifs (Fig. 1) (Beitz, 2005; Baker et al., 2013;
Verkman et al., 2014; Munday et al., 2015; Fairlamb and Horn,
2018). Trypanosoma brucei AQP1 and AQP3 display the internal
arrangements in the protein pore observed in canonical AQPs,
including the canonical ‘NPA’ within two half α-helices and a
narrower ‘aromatic/arginine’ (ar/R) motif (Beitz, 2005).
Interestingly, TbAQP2 does not retain this canonical configur-
ation, displaying an unconventional ‘NPS/NSA’ filter motif and
rearrangement in the ar/R motif that is replaced by a neutral leu-
cine at position 264 (L264), followed by aliphatic, rather than aro-
matic, residues (A88, I110, V249 and L258), which are equivalent
to the ‘IVLL’ motif observed in the selectivity pore of canonical
AQPs (de Groot and Grubmuller, 2001; Baker et al., 2013;
Quintana et al., 2020). These structural features indicate that
TbAQP2 can accommodate larger solutes through the selectivity
pore (Uzcategui et al., 2004).

These examples demonstrated that AQP evolution is highly
plastic, with the creation of additional paralogues, facilitating
altered specificity. Hence, the AQP family contributes to surviving
environmental complexity and exploitation of new ecological
niches, with a considerable impact on the life history of the
earth. However, the absence of AQPs from many lineages or a
genetic demonstration of essentially in many organisms serves
to underscore the challenges remaining for the full understanding
of AQP function.

TbAQP2 and multidrug resistance

The treatment of sleeping sickness relies on drugs to clear first- or
second-stage infections, and the choice of drug depends on the
capacity to penetrate the blood–brain barrier (BBB) (Denise and
Barrett, 2001; Steverding, 2010; Fairlamb and Horn, 2018). Of
these, pentamidine and melarsoprol represent two of the most
potent drugs currently used to treat first- and second-stage

Fig. 1. Structure and copy number of AQP paralogues. (A) Left panel: Depiction of the
Trypanosoma brucei AQP2 monomer. The trans-membrane domains are highlighted
in magenta. Right panel: Details of the unique NPS/NSA TbAQP2 selectivity pore.
(B) Left panel: Top view of the proposed tetrameric structure of T. brucei AQP2
model. The lysine residues in position K147 and K234 are shown as spheres. Right
panel: Expanded view of the conformational change observed during TMD simula-
tions on TMD1 and TMD3 as a result of the K147R mutation. Wild type TbAQP2 is
shown in green. TbAQP2 displaying the K147R and K234R mutations is shown in
light orange. Other residues important for intramolecular interactions between trans-
membrane domains (N70, D73, K142 and Y151) are also highlighted. Mutations on
these residues profoundly impair protein stability, rendering the parasites resistant
to pentamidine and melarsoprol. (Quintana et al., 2020). (C) Number of clear AQP
paralogues detected in representative taxa. Note that for the protists these are all
represented by the more permissive glycerol-capable class.
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diseases, respectively, displaying low nanomolar 50%-effective
growth-inhibitory concentration (EC50) (Denise and Barrett,
2001; Bray et al., 2003; Barrett et al., 2007; Fairlamb and Horn,
2018). Pentamidine, an aromatic diamidine, is used to treat first-
stage (haemolymphatic stage) T. gambiense HAT (Denise and
Barrett, 2001; Barrett et al., 2007; Baker et al., 2013). This com-
pound binds nucleic acids with high affinity, leading to accumu-
lation by, and ultimately destruction of, the kinetoplast (Mathis
et al., 2006; Baker et al., 2013; Gould and Schnaufer, 2014;
Al-Horani et al., 2019; Kennedy and Rodgers, 2019). However,
pentamidine is unable to reach the central nervous system
(CNS), in part due to its high affinity interactions with serum pro-
teins, charge and relatively high retention in tissues and is there-
fore ineffective for the treatment of second-stage
meningoencephalic HAT (Barrett et al., 2007; Maclean et al.,
2012). Melarsoprol, on the contrary, is an arsenical compound
used for the treatment of second-stage HAT, including T. rhode-
siense HAT (Fairlamb et al., 1989; Keiser et al., 2000; Field et al.,
2017). This compound is thought to be metabolized to melarsen
oxide prior to uptake by African trypanosomes, leading to the for-
mation of a stable adduct with trypanothione known as Mel T
(Burri et al., 1993, 1994; Fairlamb and Horn, 2018).
Melarsoprol penetrates the BBB comparatively more effectively
than pentamidine, reaching the minimum concentration required
for parasite clearance in the CNS (Mäser et al., 1999; Stewart et al.,
2010). Melasoprol also displays reactive encephalopathy in ∼10%
of patients, which is frequently fatal (Fairlamb and Horn, 2018).

Given the limited repertoire of drugs available for treatment it
is perhaps not surprising that resistance to these compounds has
been frequently observed in endemic countries. Indeed,
diamidine-arsenical cross-resistance was initially reported in the
1940s, suggesting that mechanisms of uptake and/or action were
common to these otherwise divergent chemical compounds, but
with the molecular details poorly understood. The identification
of the pentamidine/melarsoprol transporter has been a serendip-
itous process. Initial studies in cross-resistance in laboratory
strains (Bernhard et al., 2007; Bridges et al., 2007; Graf et al.,
2015a) and field isolates (Shahi et al., 2002; Alsford et al., 2012)

from relapsed patients identified the gene encoding for the purine
transporter responsible for drug uptake as T. brucei adenosine
transporter 1 (TbAT1). In addition to TbAT1, the high-affinity
pentamidine transporter (HAPT1) (Bernhard et al., 2007) as
well as the ATP-binding cassette transporter MRPA (Baker
et al., 2012) were also proposed to mediate drug resistance by
various mechanisms, but neither explained the drug resistance
levels observed in field isolates (Baker et al., 2013).

Using genome-wide RNAi-mediated genetic screening and
functional assays, the locus encoding the closely related AQP2
and AQP3 was identified as a bona fide hit for pentamidine/mel-
arsoprol cross-resistance (Graf et al., 2015b). Further biochemical
and genetic manipulation studies demonstrated that deletion of
AQP2, but not AQP3, led to a significant increase in the EC50

of both compounds, mirroring the behaviour observed in previ-
ously generated laboratory strains and field isolates (Munday
et al., 2014; Graf et al., 2015b; Song et al., 2016). Other observa-
tions such as localization to the flagellar pocket in the blood-
stream form (Munday et al., 2014; Graf et al., 2015b; Song
et al., 2016; Quintana et al., 2020), as well as the unusual pore
structure discussed above, led to the hypothesis that pentamidine
and melarsoprol are likely to interact with high affinity to AQP2
located in the flagellar pocket (Alghamdi et al., 2020), posing the
question of how these compounds are internalized and also the
mechanisms for resistance.

Endocytosis or membrane uptake: competing models for
drug entry

Suggesting that the role of a channel protein is not the primary
mechanism for pentamidine to access the trypanosome cytoplasm
may seem to be a straw man, but this possibility has been pro-
posed. Specifically, as AQP2 binds pentamidine with high affinity
at the first selectivity pore, the possibility that AQP2 is a receptor
for uptake by endocytosis is not unreasonable (Fig. 2) and could
act as a parallel to ISG75-mediated uptake of suramin (Graf et al.,
2015b). This model was further supported by reports demonstrat-
ing that pentamidine binds AQP2 with nanomolar affinity, thus

Fig. 2. TbAQP2 trafficking, assembly and pentami-
dine uptake. Schematic of the trypanosome endo-
membrane system, focused on the region between
the nucleus and flagellar pocket and encompassing
the mitochondrion. AQP proteins are represented as
open coloured cylinders, with the opening indicting
the cell external/intracellular luminal face of the
molecule. Note that both ER and endosomal mole-
cules can become ubiquitylated (red dot). It is most
likely that pentamidine enters the cell at the cell
surface (see text) and is then translocated into the
mitochondrion to interact with the kinetoplast
(mitochondrial genome, purple circles) but he possi-
bility that there is a contribution from endocytosis
of AQP; pentamidine complexes remains a
possibility.
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potentially acting as a highly selective inhibitor of AQP2 (Fig. 2)
(Alghamdi et al., 2020). However, consideration of structural fea-
tures of the pore do support TbAQP2 acting as a channel for lar-
ger and more structurally flexible solutes including pentamidine
(Petersen and Beitz, 2020). In the endocytosis model, ubiquitina-
tion of TbAQP2 at the flagellar pocket is central for subsequent
ubiquitination-mediated intracellular trafficking and delivery to
intracellular organelles such as the lysosome. Indeed, TbAQP2
forms a stable homomultimeric complex in the flagellar pocket
where ubiquitination is likely to take place on individual mono-
mers (Quintana et al., 2020).

The opposing membrane uptake model proposes that pent-
amidine, and potentially melarsoprol, are taken up via the intrin-
sic channel properties of TbAQP2. Indeed, a recent report
demonstrates that drug permeation is possible due to a highly
conserved amino acid motif in the central pore architecture of
TbAQP2, facilitating the passage of ‘high’ molecular weight
solutes (Alghamdi et al., 2020). This was demonstrated by
TbAQP3 mutants containing the amino acids of the selectivity
pore from TbAQP2 possessing increased capacity for pentami-
dine uptake (Alghamdi et al., 2020). Moreover, pentamidine per-
meation through TbAQP2 seems to be further aided by the
intrinsic membrane potential and is not abrogated by partially
blocking endocytic uptake (Alghamdi et al., 2020; Quintana
et al., 2020), albeit at a rate that is considerably slower than for
lower molecular weight solutes, which in essence implies a leak
in the AQP2 permeability barrier.

Concerning the likely site for pentamidine uptake, there is no
evidence that endocytosis or post-translational modification of
AQP2 is required. Specifically, additional genes identified from
the genome-wide RNAi screen identified a kinase and phosphatase
for melarsoprol and pentamidine respectively, as well as one unique
hypothetical each (Alsford et al., 2012). None of these genes have
evidence for roles in ubiquitylation, endocytosis or trafficking in
general, suggesting that translocation of drugs from the surface is
sufficient for toxicity and that blocking ubiquitylation or endocyto-
sis does not offer resistance. However, it needs to be acknowledged
that a role for endocytosis that is overshadowed by the channel-
mediated mechanism, remains a possibility.

Stability and folding of TbAQP2 contribute to pentamidine
resistance

In common with most membrane proteins, AQPs undergoing
translation are inserted into the endoplasmic reticulum through

the Sec61 translocon and assisted in folding via a cohort of cha-
perones (Pitonzo and Skach, 2006). Given that most AQPs are
also glycoproteins it is likely that the calnexin/calreticulin quality
control system is involved in monitoring quality and rapidity of
folding. Importantly, formation of homotetrameric complexes is
important for AQP stability and the formation of heterotetra-
meric complexes has not been observed (Duchesne et al., 2002;
Furman et al., 2003). The residues responsible for this specificity
are not clear, but AQP tetramers can assemble into higher order
quasi-crystalline arrays (Kitchen et al., 2016). Furthermore, there
are clear differences in the stabilities of the water and solute per-
meable AQP tetramers with the former exhibiting greater stability
than the latter and likely due to features within the final two
trans-membrane domains and loops D and E (Lagrée et al.,
1998; Duchesne et al., 2002; Buck et al., 2007; Kitchen et al.,
2016), albeit with the functional consequences, if any, unclear.
Significantly the folding pathway is not identical for all AQPs,
being controlled at least partly by sequences within the second
trans-membrane domain (Carrington et al., 2010). Finally, mam-
malian AQPs are both phosphorylated and ubiquitylated, with at
least the latter contributing to protein turnover, endocytosis and
quality control (Kamsteeg et al., 2006; Mandal et al., 2012;
Sharma et al., 2015; Quintana et al., 2020). Although it is most
likely that similar pathways operate in trypanosomes, with direct
evidence for ubiquitylation and most of the relevant folding cha-
perones present, the precise mechanisms of AQP maturation, at
least in African trypanosomes, remain to be investigated in detail
(Field et al., 2010; Tiengwe et al., 2016a, 2016b).

To understand folding, stability and trafficking of AQP2 in T.
brucei we examined sequence-dependence and trans-membrane
domain exchange designed to mimic natural AQP2/3 chimeras
expressed in a triple null background (Jeacock et al., 2017;
Quintana et al., 2020). TbAQP2 forms both tetramers and tetra-
mers of tetramers and is degraded in the lysosome by a ubiquitin-
dependent process (Fig. 2) (Quintana et al., 2020). Attempts to
influence ubiquitination by mutating cytoplasmic lysine residues
unexpectedly reduce stability rather than preventing lysosomal
targeting (Quintana et al., 2020). This is due to reduced folding
and tetramerization efficiency, which triggers ER-associated deg-
radation, indicating a failure to complete quality control
(Quintana et al., 2020). Perhaps the most significant finding is
that chimerical TbAQP2/3 proteins also lead to impaired folding
and reduced stability (Quintana et al., 2020). This was also the
case for constructs mimicking chimeras found in trypanosomes
from patients where pentamidine treatment had failed.

Fig. 3. Major events in the history of African trypanosomiasis. Annotations above the timeline in black indicate major cultural, historical and management events
with a bearing on trypanosomiasis. The influence on hominid evolution is inferred from impact on savannah ecosystems. Annotations in green indicate introduc-
tion of chemotherapeutic agents and in red emergence of resistance mechanisms and related advances in molecular understanding. Annotated beneath the time-
line are periods of major change in the incidence of trypanosomiasis, in red for periods of epidemics and teal for control measures.
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Clearly rigorous quality control mechanisms operate within
the ER of T. brucei, but with a consequence that mutations in
the non-essential AQPs can render parasites refractory to treat-
ment. Moreover, the instability of AQP2 is likely an underlying
cause of pentamidine treatment failure while the production of
chimeric forms is potentially a high frequency event and stems
directly from generation of contiguous paralogues initially derived
by gene duplication; presumably the chimeras have poor folding
capability due to mismatch between the N- and C-terminal
regions.

Concluding remarks

Remarkable advances to understanding mechanisms for classical
therapies against African trypanosomes, as well as development
of new drugs and the successes of public health programmes,
auger well for the control of both human and animal African
trypanosomiasis. Remarkably, we now have considerable under-
standing of pentamidine and melarsoprol uptake as well as
mechanisms for resistance. The evolutionary history of trypano-
some AQPs reveals both how pentamidine sensitivity arose,
with a specifically broad-spectrum AQP2, and resistance arising
from recombination. Placed in context (Fig. 3) the millennia-old
relationship between trypanosomes and humans has been com-
plex, with periods where one organism had the upper hand and
then the other. Recently, humans have been in the ascendant,
with case numbers having dropped precipitously and even
exceeding the WHO roadmap predictions. Indeed, several coun-
tries previously considered endemic have reported no cases for
several years. It can only be hoped that the advances made in
the last decade are not eroded by the COVID-19 pandemic,
which threatens to undermine global progress on many fronts,
including the control of infectious diseases (http://hdrundp.org/
en/2020-report).
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