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The concept of disease-specific chemotherapy was developed a
century ago. Dyes and arsenical compounds that displayed
selectivity against trypanosomes were central to this work1,2, and
the drugs that emerged remain in use for treating human African
trypanosomiasis (HAT)3. The importance of understanding the
mechanisms underlying selective drug action and resistance for
the development of improved HAT therapies has been recognized,
but these mechanisms have remained largely unknown. Here we use
all five current HAT drugs for genome-scale RNA interference target
sequencing (RIT-seq) screens in Trypanosoma brucei, revealing the
transporters, organelles, enzymes and metabolic pathways that
function to facilitate antitrypanosomal drug action. RIT-seq profil-
ing identifies both known drug importers4,5 and the only known pro-
drug activator6, and links more than fifty additional genes to drug
action. A bloodstream stage-specific invariant surface glycoprotein
(ISG75) family mediates suramin uptake, and the AP1 adaptin
complex, lysosomal proteases and major lysosomal transmembrane
protein, as well as spermidine and N-acetylglucosamine bio-
synthesis, all contribute to suramin action. Further screens link
ubiquinone availability to nitro-drug action, plasma membrane
P-type H1-ATPases to pentamidine action, and trypanothione
and several putative kinases to melarsoprol action. We also demon-
strate a major role for aquaglyceroporins in pentamidine and
melarsoprol cross-resistance. These advances in our understanding
of mechanisms of antitrypanosomal drug efficacy and resistance will
aid the rational design of new therapies and help to combat drug
resistance, and provide unprecedented molecular insight into the
mode of action of antitrypanosomal drugs.

African trypanosomes are transmitted by the tsetse insect vector and
circulate in the bloodstream and tissue fluids of their mammalian hosts.
These protozoan parasites cause HAT, also known as sleeping sickness,
and the livestock disease known as Nagana. HAT is typically fatal if
there is no chemotherapeutic intervention. The public health situation
has improved recently with increased monitoring and chemotherapy
averting more than 1.3 million disability-adjusted life years (DALYs) in
the year 2000 and the estimated number of cases at less than 70,000 in
2006 (ref. 7). However, therapies have many problems, including severe
toxicity and increasing resistance, which is a major concern owing to
the absence of a vaccine or therapeutic alternatives3. The current HAT
therapies are pentamidine or suramin, which are only suitable for the
first stage of the disease before central nervous system involvement, and
eflornithine, nifurtimox or melarsoprol for advanced disease3 (Sup-
plementary Table 1). All of these drugs were developed well before
the advent of molecular, target-based therapy and, with the exception
of eflornithine, they elicit their antitrypanosomal effects by disrupting
unknown targets. HAT treatment failure rates were reported to be
increasing for suramin, when this drug was still in use in West Africa
in the 1950s8, and melarsoprol treatment failure is a current and
increasing problem9.

We used genome-scale tetracycline-inducible RNA interference
(RNAi) library screens in T. brucei to identify the genes that contribute
to drug action. In these screens, replicating cells only persist in an
otherwise toxic environment if knockdown confers a selective advantage
(Fig. 1a); note that knockdown is not expected to identify drug targets.
The RNAi library consists of ,750,000 clones, each transformed with
one RNAi construct, and represents .99% of the approximately 7,500
non-redundant T. brucei gene set. Because each gene is identified by an
average of approximately five different RNAi sequences, true leads can
be identified with high confidence and potential off-target false leads can
be minimized (see Supplementary Methods). Screens were performed
using all current HAT drugs and each yielded a population of cells
displaying an inducible drug resistance phenotype after eight or fourteen
days of selection (Fig. 1b and Supplementary Fig. 1). Genomic DNA
from these cells was subjected to RIT-seq10 to create profiles of RNAi
targets associated with increased resistance and to identify the genes that
contribute to drug susceptibility. Genome-wide association maps show
read density for 7,435 T. brucei genes (Fig. 1c). We defined genes with
‘primary signatures’ as those associated with two or more independent
RIT-seq tags, each with a read density of .99; the screens yielded 55 of
these signatures (Fig. 1c; see Supplementary Methods and Supplemen-
tary Data 1. Previous work linked the P2 adenosine transporter 1 (AT1)
to melarsoprol uptake4,11–13, an amino acid transporter family member
(AAT6) to eflornithine uptake5,13,14 and a nitroreductase (NTR) to
nifurtimox activation6,14. Each of these genes is identified on the appro-
priate genome-wide association map (Fig. 1c), providing validation for
our screens and indicating excellent genome-scale coverage in the
RNAi library. Selected read-density signatures that establish new
genetic links to drug susceptibility are shown in Fig. 1d.

The known eflornithine transporter is the only primary signature
from the eflornithine screen. By contrast, the suramin screen revealed
28 genes associated with primary signatures (Fig. 1c and Supplemen-
tary Data 1). Suramin, which has been used for HAT therapy since
the 1920s15, is a colourless sulphated napthylamine related to trypan
red. Because this drug has a strong negative charge, it cannot cross
lipid membranes by passive diffusion. Genes that are linked to the
action of suramin encode ISG75, the function of which is unknown16,
four lysosomal proteins (the cathepsin L (CatL) and CBP1 peptidases,
p67 and Golgi/lysosomal protein 1 (GLP1)), all four subunits of
the adaptin complex (AP1), which are involved in endosomal,
clathrin-mediated trafficking, and multiple spermidine and
N-acetylglucosamine biosynthetic enzymes (Supplementary Fig. 2
and Supplementary Data 1).

Eight of these genes were selected for further analysis. We assembled
multiple independent inducible RNAi strains for each gene and con-
firmed that knockdown (Fig. 2a and Supplementary Fig. 3) increased
suramin resistance in every case (Fig. 2b and Supplementary Fig. 4).
We then determined subcellular localization for the putative major
facilitator superfamily transporter (MFST); the tandem of three closely
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related MFST genes gave the strongest read-density signature in the
suramin screen and the greatest half-maximum effective concentra-
tion (EC50) increase (. tenfold) following knockdown (Fig. 2b). In
contrast to a putative ubiquitin hydrolase (UBH1) identified by the
screen, MFST and a member of the endomembrane EMP70 family
partitioned into the T. brucei membrane fraction, as expected (Fig. 2c),
and MFST localized to the lysosome as did the major lysosomal type I
membrane glycoprotein, p67 (ref. 17), which was also identified in the
screen (Fig. 2d). Because ISG75 trafficking is ubiquitin dependent18, we
investigated whether UBH1 influenced ISG75 expression. UBH1
knockdown reduced ISG75 but not ISG65 expression (Fig. 2e), suggest-
ing that de-ubiquitination by UBH1 specifically affects ISG75 copy
number; clearly this mimics the direct effect of RNAi against ISG75.
A vacuolar protein sorting factor, Vps5, which positively controls
ISG75 expression19, and a second putative ubiquitin hydrolase, were

also identified by the screen (see Supplementary Fig. 2 and Supplemen-
tary Data 1), suggesting that ISG75 copy number is highly connected to
suramin resistance. To investigate whether ISG75 contributes to
suramin binding, we performed whole-cell binding assays using
3[H]-labelled suramin. Cells that were depleted for ISG75 displayed
significantly and specifically reduced suramin binding (Fig. 2f).

We observed a greater than fourfold increase in EC50 after knock-
down of the CatL-like protease known as brucipain, another abundant
lysosomal protein20, and an orthogonal assay using a dual-specificity
CatL–CatB inhibitor revealed inhibitor antagonism (Fig. 2g), indicating
that protease activity enhances suramin toxicity. Taken together, the
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Figure 2 | A network of proteins link ISG75, endocytosis and lysosomal
functions to suramin action. a, Western blots demonstrate knockdown;
Coomassie stains serve as loading controls. Tags, green fluorescent protein (GFP)
and 123MYC epitope (12M). See Supplementary Fig. 3 for growth curves.
b, Endosomal and lysosomal factors and ISG75 contribute to suramin action.
Error bars, s.d. from independent RNAi strains (see Supplementary Fig. 4).
c, MFST and EMP70 are membrane associated. The western blots show
supernatant (S), wash (W) and pellet (P; membrane fraction). d, MFST co-
localizes with lysosomal protein, p67, but not recycling endosomes (Rab11).
Dashed boxes, areas magnified in fluorescent images. e, Knockdown of UBH1
specifically decreases ISG75 expression. f, ISG75 mediates suramin binding. Error
bars, s.d. from duplicate experiments. P value from Student’s t-test. ISG75
knockdown is shown. Scale bar, 5 mm. g, The CatL–CatB, and ODC inhibitors
FMK024 and eflornithine, respectively, antagonize suramin action. Isobolograms
showing 50% fractional inhibitory concentrations (FICs). The solid lines indicate
antagonism. The dashed lines indicate expected outcomes for no interaction.
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Figure 1 | Identification of drug efficacy determinants in T. brucei. a, A
schematic showing the RNAi library screening approach. The expected
outcomes are given for RNAi targets that fail to affect drug resistance (black),
increase resistance to drug A (blue), drug B (orange) or both (green). b, Each
screen yielded a population displaying tetracycline (Tet)-inducible (RNAi-
dependent) drug-resistance (see Supplementary Fig. 1). The plot indicates the
proportion of the resistance phenotype that is tetracycline inducible.
c, Genome-wide RIT-seq profiles. Each map represents a non-redundant set of
7,435 protein-coding sequences. Red bars represent ‘primary’ read-density
signatures. Black bars represent all other signatures of .50 reads (see
Supplementary Data 1). All three expected ‘hits’, AAT6, AT1 and NTR, are
indicated. d, Selected signatures. Each peak represents a unique RIT-seq tag.
‘1’, numbers of additional genes identified in each category. See
Supplementary Fig. 2 for details and additional signatures.
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results demonstrate a central role for lysosomal functions in suramin
action. As four enzymes that are involved in spermidine biosynthesis,
including ornithine decarboxylase (ODC), were linked to suramin
action (Supplementary Data 1), we used eflornithine to specifically
inhibit ODC, which again revealed inhibitor antagonism (Fig. 2g; Sup-
plementary Table 1). Thus, ODC activity enhances suramin toxicity,
probably through spermidine biosynthesis. Suramin endocytosis21 and
intralysosomal accumulation22 have previously been demonstrated in
T. brucei and an acquired suramin resistance phenotype was stable in
bloodstream stage T. brucei but was not expressed in the insect stage23.
The RIT-seq profile reported here, bloodstream-stage-specific expres-
sion of ISG7516 and strong downregulation of endocytic and lysosomal
activities in the insect stage24, are all consistent with stage-specific,
intralysosomal accumulation of suramin.

Work with dyes and arsenicals revealed the first examples of resist-
ance to chemotherapy a century ago and, based on cross-resistance, it
was deduced that there are shared mechanisms contributing to the
action of certain ‘parasitotropic’ compounds1. Among current HAT
therapies, cross-resistance has been documented only for melarsoprol
and pentamidine9, but our understanding of the mechanism remains
incomplete. Both drugs enter trypanosomes through the P2 AT1 but
additional, dual-specificity transporters are predicted9. To identify cross-
resistance mechanisms, we analysed all pair-wise comparisons among
our screens (Fig. 3a). A single robust signature emerged, implicating
two closely related aquaglyceroporins (AQPs)25 in melarsoprol and
pentamidine cross-resistance. To directly test the role of the AQPs,
we generated a strain that was deficient in aqp2 and aqp3 (aqp2/aqp3-
null strain) (Fig. 3b). The EC50 was increased more than 2-fold and 15-
fold for melarsoprol and pentamidine, respectively, in aqp2/aqp3-null
cells compared to wild-type cells (Fig. 3c). Our favoured hypothesis
involves regulation of dual-specificity transporters by AQPs.

The nifurtimox, pentamidine and melarsoprol screens yielded eight,
nine and nine genes associated with primary signatures, respectively.
The major primary signature in the nifurtimox profile identified the
mitochondrial, flavin-dependent nitroreductase that activates this
class of nitro pro-drugs6. We also identified the putative flavokinase
that converts riboflavin to FMN, an essential nitroreductase cofactor6.
Four additional signatures identified genes that encode proteins linked
to ubiquinone biosynthesis (Supplementary Fig. 2 and Supplementary
Data 1), in support of the hypothesis that nitroreductase, like NADH
dehydrogenases, transfers electrons from NADH to ubiquinone to
generate ubiquinol6. We assembled RNAi strains for one of these
factors and demonstrated that knockdown increased the EC50 for
nifurtimox by approximately 1.5-fold (Supplementary Fig. 5). Thus,
six gene signatures support a dominant role for nitroreductase in
nifurtimox activation and suggest that this is dependent upon the
availability of the FMN cofactor and the natural substrate.

Pentamidine is an aromatic diamidine, a nucleic acid binding
drug that accumulates to millimolar concentrations and collapses
trypanosome mitochondrial membrane potential26. Two primary sig-
natures from the pentamidine screen identify genes encoding P-type
ATPases (Supplementary Fig. 2 and Supplementary Data 1), and one
of these represents the plasma membrane H1-ATPases, HA1, HA2
and HA3 (ref. 27). We assembled RNAi strains for these ATPases and
demonstrated that knockdown increased the EC50 for pentamidine
more than eightfold (Supplementary Fig. 5), suggesting that an
HA1–3 dependent proton motive force is required to drive pentamidine
uptake. We used a similar approach to demonstrate a greater than
twofold increase in the EC50 for pentamidine following knockdown
of a putative protein phosphatase (Supplementary Fig. 5).

Melarsoprol acts primarily by forming a stable adduct with trypa-
nothione, known as Mel T28, but whether this adduct reduces or
increases toxicity has remained unclear. The melarsoprol screen iden-
tified a link to trypanothione synthase and trypanothione reductase
(Supplementary Fig. 2 and Supplementary Data 1), suggesting that the
Mel T adduct is toxic. Three other primary signatures identified an

over-representation (P 5 2.3 3 1029, x2 test) of putative protein
kinases (Supplementary Fig. 2 and Supplementary Data 1), and
another signature identified a gene encoding a highly phosphorylated
protein related to the amino-terminal segment of the large tumour
suppressor, LATS1 (see Supplementary Fig. 2a). We used independent
strains to confirm that LATS1-like knockdown increased the EC50 for
melarsoprol by approximately 1.5-fold (Supplementary Fig. 5). On the
basis of these signatures, we suggest a role for a signalling cascade in
melarsoprol susceptibility. Our findings are summarized in Fig. 4. In
particular, we propose that suramin uptake occurs through ISG75-
mediated endocytosis (Fig. 4a). Metabolic pathways that contribute
to suramin or nifurtimox action are detailed in Fig. 4b.

All but one of the current HAT drugs was developed in the absence
of an understanding of the chemical–biological relationships under-
lying toxicity or selectivity. Our RIT-seq profiles revealed more than 50
T. brucei genes that enhance drug susceptibility, unearthing inter-
actions that are largely inaccessible using other approaches. Notably,
the knockdown approach and the sensitivity of RIT-seq allow access
to essential proteins, complexes and pathways such as H1-ATPase,
the adaptin complex and spermidine biosynthesis. Our results also
show the utility of drugs as molecular probes for functional networks.
In particular, the findings highlight factors that contribute to drug
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accumulation or the generation of toxic metabolites, features that could
be exploited to deliver or generate novel toxins. Additionally, absence or
loss of function could explain innate or acquired resistance; suramin
resistance or melarsoprol and pentamidine cross-resistance may be due
to reduced MFST or AQP expression, respectively (for examples, see
Supplementary Fig. 6). These advances in our understanding of drug–
trypanosome interactions will facilitate rational approaches to the
design of more efficacious and durable therapies, and will be useful
for monitoring the emergence and spread of resistance.

METHODS SUMMARY
Assembly of the bloodstream-form T. brucei RNAi library and RIT-seq were
reported previously10. Briefly, a tetracycline-inducible RNAi plasmid library,

containing randomly sheared genomic fragments (with a mean fragment size of
,600 bp) under the control of head-to-head, tetracycline-inducible phage T7
promoters29, was targeted to a single genomic locus that had been validated for
robust expression30. The long double-stranded RNAs (dsRNAs) that were generated
in the presence of tetracycline are processed to produce a pool of short interfering
RNAs that programme the endogenous RNAi machinery to mediate sequence-
specific destruction of the cognate messenger RNA. For this study, the library was
grown under inducing conditions with drug selection, and genomic DNA was iso-
lated from surviving populations. For RIT-seq profiling, adaptor-ligated sequencing
libraries were prepared from each genomic DNA sample and used to amplify DNA
fragments containing RNAi cassette-insert junctions in semi-specific PCR reactions;
one primer was specific for the RNAi vector and the other for the Illumina adaptor.
Size-selected DNA was sequenced with 76 cycle runs on an Illumina GAII.
Sequencing reads containing a nine-base RNAi cassette-insert junction sequence
were then mapped to the T. brucei reference genome. In cases in which loss of
function increases drug tolerance, RNAi-target sequence representation is increased
relative to the otherwise susceptible population, revealing ‘hot spots’. Thus, RNAi
target fragments serve as templates for the production of dsRNA and also provide
unique sequence identifiers for each clonal population.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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Figure 4 | Determinants of drug efficacy in African trypanosomes.
a, b, Proteins (red) and metabolites (green) that are linked to drug action. a, A
schematic summarizing the findings from the RIT-seq screens. In the case of
suramin, we propose that ISG75 binds the drug at the cell surface. ISG75
trafficking then delivers the complex, through the flagellar pocket (FP), to the
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high-affinity pentamidine transporter; LAPT, low-affinity pentamidine
transporter; TS2, oxidised trypanothione; T[SH]2, reduced trypanothione;
UQ9, ubiquinone 9. b, Biosynthetic pathways that are linked to drug action. See
Supplementary Data 1 for definitions and further details.
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METHODS
T. brucei growth and drug selection. The bloodstream-form T. brucei MITat 1.2
clone 221a RNAi library10 was derived using the randomly sheared genomic
fragment (with mean fragment length ,600 bp) RNAi plasmid library29. The
T. brucei RNAi library and 2T1 cells were maintained as described29,30. For selective
screens, the RNAi library, maintained throughout at .5 3 106 cells, was induced
with tetracycline (1 mg ml21) for 24 h and then grown in medium containing
tetracycline, plus each HAT drug at 0.5 3 EC50 to 3.5 3 EC50 (Supplementary
Table 1 and Supplementary Fig. 1). All drug stocks were in dimethylsulphoxide.
RIT-seq. Selected populations from each screen were assessed for tetracycline-
dependent drug resistance. The RNAi target fragments provide unique identifiers
for each clone in the population. As a quality-control step, PCR amplification,
agarose gel fractionation and Sanger sequencing of the eluted products were
performed as described14, and followed with RIT-seq analysis10. All nine genes
that were identified by Sanger sequencing were associated with high-density
Illumina read-counts (13,000 to 528,000; see Supplementary Data 1a). Briefly,
we ran 76-cycle sequencing on an Illumina GAII; this generates sequence tags
derived from the ends of the RNAi target fragments. Only sequences containing a
terminal RNAi-vector junction sequence (GCCTCGCGA) were mapped to the
T. brucei 927 reference genome31 using the SSAHA sequence alignment algorithm32.
After mapping, for each protein coding sequence (CDS) in each experiment, we
obtained a count of reads mapping; all genes associated with .9 reads are detailed
in Supplementary Data 1b. We also browsed all read-density plots in Artemis33 for
signatures that fell outside of CDSs to generate the full non-redundant ‘hit list’
detailed in Supplementary Data 1a.
Read-density signatures. Genome coverage in the current RNAi library represents
.99% of all genes, with 5 RNAi targets per gene on average10; shorter genes are
expected to be represented by fewer RNAi targets. Our screens yielded 5–59 genes
(0.07–0.8%) with a .99RIT-seq tag (a tag with a read density of .99; the eflornithine
screen yielded 5, the suramin screen 59 the nifurtimox screen 54, the pentamidine
screen 17 and the melarsoprol screen 19). In each screen, at least one gene was
associated with a .50,000RIT-seq tag (Supplementary Data 1a). From this set, we
derived 55 genes with ‘primary signatures’, those associated with two or more
.99RIT-seq tags. If these tags were randomly distributed, we would expect a single
primary signature from 300 screens using eflornithine or from two screens using
suramin, assigning a high degree of confidence to the vast majority of observed
primary signatures (Supplementary Data 1a). The nifurtimox output is unusual
compared to the other outputs and may reflect drug-mediated mutagenesis34; for
example, inactivating mutations within NTR may prolong the survival of clones
carrying unrelated RNAi targets. However, even limited tetracycline-regulated drug
resistance (Fig. 1b) and a high number of sequence tags in the nifurtimox screening
profile (Supplementary Data 1 and Fig. 1c) had little impact on primary signature
confidence. Many of the 130 genes that are associated with ‘secondary signatures’ in
Supplementary Data 1a may also reflect mechanisms of drug action, but here we
only considered seven of these genes that were linked to a common function with a
primary hit (Supplementary Fig. 2). We observe that, on average, 3.5 tags per gene
are associated with the 24 primary, single copy genes that are shown in Sup-
plementary Fig. 2. Minimal library propagation could explain a modest reduction
in coverage but we suggest that reduced coverage in the current RIT-seq outputs is
primarily explained by major fitness defects following knockdown.
Plasmid construction and strain assembly. The AQP locus was disrupted by
replacement of a 4,772-bp (AQP2 and AQP3 ) fragment with NPT and BLA
selectable markers (the T. brucei genome is diploid). Gene-specific RNAi frag-
ments of 400–600 bp or 200 bp, to facilitate moderate knockdown in the case of the
known essential gene p67 (ref. 17), were amplified using PCR primers designed
using RNAit35 and cloned into pRPaiSL for the generation of stem-loop, ‘hairpin’
dsRNA as the trigger for RNAi36. We used a long, 400–600-bp RNAi target
fragment for CatL because RNAi previously produced no growth defect37.
However, cells retained 35% CatL activity in that study37, probably explaining
why we see a major growth defect when expressing a more potent stem-loop

dsRNA (Supplementary Fig. 3). For epitope tagging at native loci, C-terminal
fragments, or an N-terminal fragment (UBH1), were amplified and cloned in
pNATxTAG and pNATTAGx (ref. 36), respectively. Constructs were introduced
into 2T1 cells as described30. Full oligonucleotide details are available on request.
Strain analysis. Cumulative growth curves were generated from cultures seeded
at 105 cells ml21, counted on a haemocytometer and diluted back to 105 cells ml21

as necessary. For EC50 assays, RNAi strains were pre-induced for 72 h in
1 mg ml21 tetracycline, except CatL and AP1b, which were pre-induced for
24 h at 2.5 and 1 ng ml21, respectively. Isobolograms were generated using a
checkerboard assay as described38; FMK024 (N-morpholineurea-phenylalanyl-
homophenylalanylfluoromethyl ketone; Sigma) is an irreversible, dual-specificity
inhibitor of CatL and CatB. All EC50 assays were carried out using alamarBlue
as described14,39. Southern blotting was carried out according to standard proce-
dures40. Subcellular fractionation by hypotonic lysis was carried out as described41.
All protein samples were stored in the presence of a protease inhibitor cocktail
(Roche) and were not boiled. Whole-cell lysates and hypotonic lysis fractions were
separated by SDS–PAGE using standard protocols40. Immunofluorescence was
carried out as previously described10. We used specific antisera to detect ISG75
(ref. 42), p67 (ref. 43), CatL17, GLP1 (ref. 44) and AP1c (ref. 45), and anti-MYC or
anti-GFP antisera were used to detect tagged versions of MFST, UBH1 and
EMP70. To assess suramin binding, cells were collected at mid-log phase and
resuspended at 107 ml21 in 35 nM 3[H]-suramin (Hartmann Analytic; pre-
incubated for 16 h in complete HMI11) at 37 uC. Cells were washed in ice-cold
PBS, resuspended in 100 ml Optiphase Supermix scintillant (Perkin Elmer) and
3[H]-suramin incorporation quantified using a 1450 Microbeta scintillation
counter (Perkin Elmer).
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