Supplementary data

S1.1: The result of cell fractionation on a sucrose gradient: the plastidial fraction is marked as CP , while the mitochondrial and peroxisomal fractions are marked MT and PX, respectively. S1.2: Coomasie-stained gel (Nupage Bis-Tris Mini Gels 4-12\%, IM-8042, Life Technologies) of the cellular fractions with Precision Plus Protein ${ }^{\text {TM }}$ Dual Color Standards (\#1610374, Bio-Rad). S1.3: Immunoblot of the cellular fractions with rabbit anti-RbcL (1:5000, AS03 037, Agrisera, protein size: 52 kDa) as primary antibody and goat anti-Rabbit (1:2000, A6154-5x, Sigma) as secondary antibody, and Protein Ladder (161-0374, Biorad), the positive band of expected size is marked by arrow.

	Cytosol	Acidocalcisome	Endosome	Peroxisome	Lysosome	Golgi	Nucleus	Surface
Protein ID EG_transcript_	21524	2633	181	15991	10514	5712	53416	32527
Annotation	Aldolase	VP1 Vacuolar proton translocating pyrophosphatase	CHC Clathrin heavy chain	PEX2 Peroxisomal biogenesis factor 2	Lysosomal aspartic protease	Coatomer subunit $\gamma 2$	Histone H4	Articulin $80 \mathrm{kDa}$
Ratio CP/W	0.01	1.95	0.21	W only	3.30	0.01	0.04	0.01
- $\log 10 \mathrm{p}$	5.9	1.2	3.1	1.4	2.0	3.4	3.3	4.7
Ratio Mt/W	0.02	1.46	0.53	W only	7.4	0.01	0.02	0.04
- $\log 10 \mathrm{p}$	3.3	0.5	1.9	2.2	2.6	3.3	3.6	4.4
Ratio CP/Mt	0.26	1.33	0.40	NaN	0.44	0.74	2.0	0.15
- $\log 10 \mathrm{p}$	1.5	0.6	2.8	NaN	1.5	0.3	0.8	2.9
Unique peptides	19	31	90	1	7	40	20	13

	Chloroplast			Mitochondrion		
Protein ID EG transcript	40006	158	25897	2112	23844	8912
Annotation	light-harvesting complex I protein precursor LhcB5	Photosystem I P700 chlorophyll $\underline{\underline{a}}$ apoprotein A1	light-harvesting complex I protein precursor Lhca2	Pyruvate dehydrogenase [$\mathrm{NADP}(+)$], mitochondrial	ubiquinol-cytochrome c reductase iron-sulfur subunit	F-type $\mathrm{H}+$-transporting ATPase subunit beta
Ratio CP/W	4.5	1.95	CP only	1.31	3.10	4.6
-log10p	3.2	1.7	1.9	0.6	4.4	3.8
Ratio Mt/W	0.2	0.10	NaN	4.7	4.27	4.8
- $\log 10 \mathrm{p}$	1.8	2.3	NaN	2.6	3.5	3.4
Ratio CP/Mt	24.2	20.5	CP only	0.28	0.73	0.95
-log10p	2.7	2.8	2.2	2.1	1.3	0.1
Unique peptides	4	30	2	76	35	32

S2.2: Volcano plots from p-values versus the corresponding t-test difference of 8216 protein groups quantified in the two organellar fractions and whole cell lysate. Green and blue dots represent proteins assigned to "photosynthetic" and "mitochondrial" GO categories, respectively. The remaining colours represent other selected GO categories (indicated at the top right) associated with other cellular compartments. Stringent cutoff curves for statistically significant enrichment (black curves) were calculated from the estimated false discovery rate (FDR).

mitochondrion vs chloroplast

S2.3: Volcano plot from p-values versus the corresponding t-test difference of 3,736 protein groups quantified in the mitochondrial and chloroplast fraction. Green and blue dots represent proteins assigned to "photosynthetic" and "mitochondrial" GO categories, respectively. Stringent cutoff curves for statistically significant enrichment (black curves) were calculated from the estimated false discovery rate (FDR).

custom category name	description
protein transport, folding, processing, and degradation	protein translocases of plastid envelope and thylakoid membranes, signal peptidases, heat shock proteins, enzymes of post-translational protein modifications such as methylation, acetylation, glycosylation, proline cis/trans isomerisation, disulfide bond formation and breakage, and components of protein degradation systems
metabolite and ion transport	proteins involved in transport of all non-protein compounds, including predicted membrane transporters of undetermined substrates
photosynthesis	components of photosystems, light-harvesting antennae, cytochrome b6/f complex and proteins involved in their biogenesis
ribosome, aminoacyl-tRNA biosynthesis and translation	ribosomal proteins and proteins involved in ribosome biogenesis, aminoacyl-tRNA synthetases, translation regulators
regulation and signal transduction	proteins involved in other than transcriptional and translational regulation, signaling molecules and their receptors, not-further-specified protein kinases, phosphatases, adenylate cyclases and similar enzymes typically involved in signal transduction
metabolism of cofactors and vitamins	mostly proteins involved in chlorophyll biosynthesis, several enzymes of metabolism of ubiquinone and retinol
lipid metabolism	enzymes of fatty acid biosynthesis, elongation, modification and degradation, synthesis of glycerolipids and glycerophospholipids
core metabolic pathways	proteins of glycolysis, pentose phosphate pathway, pyruvate metabolism, carbon fixation, one-carbon and acetyl-CoA metabolism
oxidative phosphorylation and electron transport	components of ATP synthase and electron transport chain
transcription and transcription regulation	transcription and translation factors and other proteins involved in gene expression regulation
RNA processing and degradation	RNAses and other enzymes responsible for RNA splicing, maturation and degradation
metabolism of terpenoids and polyketides	proteins involved in biosynthesis of terpenoids and carotenoids
DNA replication, recombination and repair	DNA polymerases, ligases, helicases, proteins involved in DNA maintenance and repair
reaction to oxidative and toxic stress	enzymes involved in detoxification of xenobiotics and protection from reactive oxygen species and photo oxidative damage, proteins responsible for redox balance
amino acid metabolism	proteins involved in amino acid synthesis and interconversions, enzymes of shikimate pathway
FeS cluster assembly and sulfur metabolism	components of SUF pathway, proteins involved in metabolism of sulfur compounds
carbohydrate metabolism	enzymes of starch and other saccharides metabolism
other	members of other pathways which were minor in comparison to other functions

S3: List of the custom protein categories with their descriptions and examples.

S4: Overview of the E. gracilis chloroplast metabolism as reconstructed from mass spectrometry-based proteome: Enzymes present in the plastid proteome in at least one isoform are marked as green circles, grey circles represent enzymes which were identified on the RNA or DNA level (in this study or previously) but are absent from the proteome; white circles represent genes completely absent in Euglena; circles marked by the letter "P" represent genes coded in the plastid genome while rest of the circles represent genes coded in the nucleus; circles marked by other letters represent genes with at least one of their isoforms gained via lateral transfer from one of the following donor groups: "Ch" for chlorarachniophytes, "Cr" for cryptophytes, " H " for haptophytes, "O" for ochrophytes, "R" for rhodophytes, "CHO" for unresolved secondary algae (cryptophytes, haptophytes or ochrophytes), CHOR for unresolved primary or secondary red algae (cryptophytes, haptophytes, ochrophytes or rhodophytes), and " B " for bacteria. Genes related to green algae and discobes are not marked, as well as genes with either "green or chlorarachniophyte" or completely unresolved algal origin. Multiple overlapping circles represent multiple subunits of certain enzymes.

[^0]

 S5.1: Metabolic map of E. gracilis chloroplast core metabolic pathways

S5.2: Map of E. gracilis chloroplast photosynthetic apparatus
S5.3: Metabolic map of E. gracilis chloroplast chlorophyll synthesis
pyruvate + glyceraldehyde-3P

biosynthesis of tocopherols

S5.4: Metabolic map of E. gracilis chloroplast terpenoid and carotenoid biosynthesis
S5.5: Metabolic map of E. gracilis chloroplast tocopherol biosynthesis
iron-sulfur cluster assembly

metabolism of glutathione and polyamines

S5.6: Metabolic map of E. gracilis chloroplast SUF system
S5.7: Metabolic map of E. gracilis chloroplast part of metabolism of glutathione and polyamines S5.8: Metabolic map of E. gracilis chloroplast metabolism of glycerolipids

S5.9: Map of E. gracilis chloroplast protein importing machinery

genetic information processing

aminoacyl-tRNA synthesis

S5.10: Map of E. gracilis chloroplast transcription, translation, RNA processing and degradation S5.11: Map of E. gracilis chloroplast aminoacyl-tRNA synthesis

S6: Phylogenetic trees showing positions of the two plastid terminal oxidases (PTOX) identified in transcriptomic data of the three euglenophytes. While the PTOX1 position suggests conventional enzyme inherited from algae, the PTOX2 falls among mitochondrial alternative oxidases.

S7: Overview of SUF subunits identified in transcriptomes of Euglena gracilis, Euglena longa and Eutreptiella gymnastica with their sources and accession numbers and proteins corresponding to the E. gracilis transcripts with their respective $\log 10 \mathrm{CP} / \mathrm{MT}$ ratios representing the credibility of plastidal localization. In case of SufB1, SufE1 and SufS1, the protein was captured in one replicate of mass spectrometry analysis of the plastidal fraction only, suggesting the protein is of lower abundance but plastid-localized. In case of SufD1 and SufS2, the protein was not captured by mass spectrometry and its localization was inferred based on the N -terminal signals and/or localizations of their putative interaction partners.

pathway	annotation	E. gracilis protein ID	$\log 10 \mathrm{CP} / \mathrm{MT}$	E. gracilis (GenBank)	Eut. gymnastica NIES-381 (MMETSP)	Eut. gymnastica-like CCMP1594 (MMETSP)	E. longa (Záhonová et Füssy et al. 2018)
SUF1	SufB1	6397	>0, one replicate only	GDJR01089002	CAMNT_0000679585 + reads	CAMNT_0046511287	Contig18694 + Contig38168 + PCR
	SufC1	13141	3+	GDJR01041264	CAMNT_0000683911	CAMNT_0046510015	$\begin{aligned} & \hline \text { Contig4493 } \\ & + \text { SL-PCR } \\ & \hline \end{aligned}$
	SufD1	6034, 33281	not captured by MS	GDJR01038170	MMETSP0039-Transcript_4862	CAMNT_0046444101	Contig15035
	SufE1	23255	>0, one replicate only	GDJR01007756	MMETSP0039-Transcript_116548	CAMNT_0046518931	Contig14296
	SufS1	12732	>0, one replicate only	GDJR01047871	CAMNT_0000708793 corrected + reads	CAMNT_0046452723	Contig3452
SUF2	SufB2	8044	3+	GEFR01008046	-	-	Contig15117
	SufC2	24338	3+	GDJRO1028245	-	-	Contig63589
	SufD2	13381	0,750	GDJR01049034	MMETSP0039-Transcript_74532	MMETSP0809-Transcript_58667 + MMETSP0810-Transcript_89787 + MMETSP0811-Transcript_48154 + MMETSP0811-Transcript_48153 + MMETSP0811-Transcript_48158 + reads	Contig36957
	SufE2	32911	not captured by MS	GDJR01012039	MMETSP0039-Transcript_109175	-	$\begin{aligned} & \text { Contig52519 } \\ & \text { + reads } \end{aligned}$
	SufS2	9032	3+	GDJR01072295	MMETSP0039-Transcript_75235	CAMNT_0046485773 + CAMNT_0046488253 + CAMNT_0046492131 + reads	$\begin{aligned} & \text { Contig31 } \\ & + \text { Contig43468 } \end{aligned}$

S8: Phylogenetic trees showing positions of SUF subunits identified in transcriptomic data of the three euglenophytes; the algaerelated genes are highlighted in green while the genes of prokaryotic origin are highlighted in purple.

Tree scale: 0.1

SufB

-Thermus thermophilus HB8 1WLOA Agrobacterium tumefaciens WP 063950931 —Caulobacter segnis WP 013080282 Acetobacter persici WP 086655332 Marinospirillum alkaliphilum WP 072326228 Frateuria terrea WP 091333159
Luteibacter sp. UNCMF366Tsu5.1 WP 072321474

_Tetraselmis striata MMETSP0818 Transcript 10849-m. 19504 Chlorophyta Chlorodendrophyceae

- Chlorella variabilis XP 005848548
\& Dunaliella tertiolecta MMETSP1127 Gene. 11665-Transcript 7314 Chlorophyta Chlorophyceae \square_{86} Chlamydomonas reinhardtii XP 001691203
86 Micromonas pusilla MMETSP1404 Transcript 5054-m. 14551 Chlorophyta Mamiellophyceae icocystis salinarum MMETSP0807 Transcript 2314-m. 10884 Chlorophyta prasinophyte CL VII _Pyramimonas parkeae MMETSP0059 Transcript 2800-m. 3537 Chlorophyta Pyramimonadales - Nephroselmis pyriformis MMETSP0034 Transcript 22770-m. 51495 Chlorophyta Nephroselmidophyceae -Picochlorum MMETSP1330 Transcript 16088-m. 32763 Chlorophyta Trebouxiophyceae -Chroomonas cf. mesostigmatica MMETSP0047 Transcript 34400-m. 57038 Cryptophyta Pyrenomonadales F2 Guillardia theta EKX50870 Cryptophyta
_ Cryptomonas paramecium MMETSP0038 Transcript 70703-m. 130607 Cryptophyta Cryptomonadales
_ Madagascaria erythrocladioides MMETSP1450 Gene.17937-Transcript 10765 Rhodophyta Compsopogonophyceae
- Compsopogon caeruleus MMETSP0312 Transcript 14020-m. 18364 Rhodophyta Compsopogonophyceae Porphyridium aerugineum SAG 1380-2 MMETSP0313 Transcript 22413-m. 25427 Rhodophyta Bangiophyceae Timspurckia oligopyrenoides MMETSP1172 Transcript 13862-m. 17659 Rhodophyta Bangiophyceae -Pleurochrysis carterae CAMPEP 0190765832 Haptophyta PLEmiliania huxleyi XP 005771417 Haptophyta Imantonia MMETSP1474 Transcript 1816-m. 2016 Haptophyta Prymnesiales - Prymnesium parvum MMETSP0006 Transcript 6386-m. 9270 Haptophyta Prymnesiales Bolidomonas pacifica MMETSP1319 Transcript 3304 -m. 4234 Stramenopila Bolidophyceae
Extubocellulus spinifer MMETSP0696 Transcript 20305 -m. 30086 Stramenopila Bacillariophyta
Mallomonas MMETSP1167 Transcript 28387 -m. 20656 Stramenopila Synurophyceae
Kannochloropsis gaditana B31 EWM29274 Stramenopila Eustigmatophyceae
Kryptoperidinium foliaceum MMETSP0119 Gene. 96560 -Transcript 51394 Dinophyta Peridiniales Lingulodinium polyedra CCMP 1738 CAMPEP 0190006280 Dinobryon MMETSP0019 Transcript 30592-m. 30975 Stramenopila Chrysophyceae

Thermococcus onnurineus NA1 5B87 A

S10: Phylogenetic trees showing positions of sulfite reductase subunits. While the subunit alpha (CysJ) sits inside chlamydiae, the subunit beta (Cysl), which is also of putative prokaryotic evolutionary origin, is sister to spirochaetes.

S11: MAFFT alignment of the conserved region (positions 310-650 of the fasta alignment derlins.fasta provided in supplementary files) of Der-like plastid proteins of E. gracilis, E. longa, Eutreptiella gymnastica, and Eutreptiella sp., reffered to as DerL1 and DerL2, host (ER) and symbiont (SELMA) specific Der1 proteins of Guillardia theta, Phaeodactylum tricornutum, and Plasmodium falciparum (as identified in Sommer et al. 2007), Der of a red alga Gracilariopsis chorda, and three human derlins and a human RHBDL4 rhomboid-like protease. In comparison to the more canonical derlins, the euglenophyte homologs contain approximately 200 aa long N -terminal extension not shown in this view. Conserved positions are highlighted in light and dark grey.

	ALL	chisq sum	p-val chisq sum	$\begin{gathered} \text { norm } \\ \text { chisq sum } \end{gathered}$	p-val norm chisq sum	CLASS I	chisq sum	p-val chisq sum	norm chisq sum	p-val norm chisq sum	CLASS II	chisq sum	p-val chisq sum	norm chisq sum	p-val norm chisq sum	no class	chisq sum	p-val chisq sum	norm chisq sum	p-val norm chisq sum
	R	175,086	1	53,1541	0,00605	R	68,4805	1	5,5466	0,67413	R	76,4798	1	44,0918	0,00019	R	30,1258	0,99969	3,51573	0,65261
	H	196,786	1	100,417	1,59E-07	H	103,726	0,99999	62,2853	2,04E-06	H	68,4743	1	32,7265	0,00485	H	24,5851	0,99999	5,40481	0,48533
	K	295,634	0,99906	-165,47	0	K	165,277	0,66994	-125,249	0	K	97,0751	0,99779	-41,4843	0,00045	K	33,2821	0,99854	1,26311	0,87152
	D	270,683	0,99999	-168,934	0	D	146,398	0,93696	-118,104	0	D	74,2336	1	-38,8899	0,00101	D	50,0515	0,84044	-11,9406	0,1263
	E	331,85	0,94694	-150,778	6,88E-15	E	181,6	0,33097	-127,026	0	E	91,39	0,9995	-18,2782	0,1224	E	58,8598	0,55389	-5,47392	0,48339
	S	401,66	0,16465	206,083	0	S	232,689	0,00196	132,049	0	S	124,561	0,82088	57,6567	1,10E-06	S	44,4105	0,94553	16,377	0,03601
	T	220,009	1	90,9184	2,67E-06	T	139,829	0,97327	71,7089	5,44E-08	T	49,0246	1	13,2613	0,26238	T	31,1553	0,99947	5,94825	0,4463
	N	127,755	1	-42,4131	0,0283	N	62,6668	1	-23,0973	0,07908	N	42,1703	1	-23,2282	0,04963	N	22,9175	1	3,91239	0,61642
	Q	171,625	1	31,1712	0,10747	Q	109,334	0,99997	28,1758	0,03268	Q	44,4741	1	2,79381	0,81334	Q	17,8174	1	0,20158	0,97941
SAMPLE	A	550,223	8,93E-09	207,823	0	A	322,218	6,09E-11	130,78	0	A	141,913	0,43895	50,5491	1,94E-05	A	86,0922	0,01889	26,4941	0,00069
	I	198,963	1	-116,336	1,79E-09	I	94,6478	1	-60,7521	4,11E-06	I	75,0626	1	-47,7654	5,09E-05	I	29,2522	0,99981	-7,81817	0,31682
	L	193,851	1	-87,2043	6,69E-06	L	84,6792	1	-43,2203	0,00105	L	69,5416	1	-25,8399	0,02897	L	39,6304	0,98461	-18,1441	0,02017
	V	197,749	1	-44,6475	0,02113	V	77,5955	1	4,64804	0,72456	V	80,1055	0,99999	-36,5342	0,00202	V	40,0481	0,98254	-12,7614	0,10227
	F	208,752	1	-134,126	4,32E-12	F	101,429	1	-64,428	1,04E-06	F	84,0705	0,99995	-54,9889	3,36E-06	F	23,253	1	-14,7091	0,05966
	w	78,9335	1	-0,15093	0,9937	W	33,1091	1	-0,69202	0,95755	W	32,2305	1	-2,38569	0,83849	W	13,5939	1	2,92677	0,70318
	Y	131,868	1	-101,205	1,43E-07	Y	60,5727	1	-56,6235	1,58E-05	Y	41,1337	1	-31,9114	0,0066	Y	30,1611	0,99954	-12,6704	0,10189
	M	106,69	1	-74,8029	9,86E-05	M	37,7605	1	-27,7899	0,03357	M	45,2825	1	-36,2452	0,00196	M	23,6471	1	-10,7678	0,168
	C	69,7508	1	-45,7416	0,01298	C	22,9606	1	-27,2205	0,03354	C	27,8388	1	-12,5845	0,24666	C	18,9514	1	-5,93654	0,43168
	G	203,731	1	-55,8315	0,00394	G	97,7821	1	-32,365	0,01414	G	64,0528	1	-21,6138	0,06775	G	41,8965	0,97065	-1,85269	0,81249
	P	794,957	0	331,381	0	P	425,55	0	193,94	0	P	300,299	1,00E-13	122,179	0	P	69,1068	0,22258	15,2626	0,05068
	ALL	chisq sum	p-val chisq sum	$\begin{gathered} \text { norm } \\ \text { chisq sum } \end{gathered}$	p-val norm chisq sum	CLASS I	chisq sum	p-val chisq sum	norm chisq sum	p-val norm chisq sum	CLASS II	chisq sum	p-val chisq sum	norm chisq sum	p-val norm chisq sum	no class	chisq sum	p-val chisq sum	norm chisq sum	p-val norm chisq sum
	R	177,641	1	-13,522	0,48501	R	27,4672	0,99931	9,04872	0,22242	R	42,351	0,99967	-1,7648	0,84162	R	107,823	1	-20,8059	0,18107
	H	104,238	1	-16,265	0,40095	H	30,0401	0,99756	5,29145	0,47554	H	11,4542	1	-0,46625	0,9579	H	62,7435	1	-21,0902	0,17519
	K	150,159	1	-13,8913	0,47079	K	16,3777	1	-13,4226	0,06776	K	22,1346	1	-1,06981	0,90297	K	111,647	1	0,60112	0,96905
	D	139,253	1	5,40623	0,78011	D	25,0269	0,99983	-10,3959	0,16098	D	24,2952	1	-3,77318	0,66921	D	89,9305	1	19,5753	0,20827
	E	207,541	1	-42,7289	0,02735	E	23,9834	0,99991	-15,9465	0,03154	E	25,6805	1	1,61052	0,8553	E	157,877	0,99999	-28,3929	0,06798
	S	278,938	0,99994	62,0444	0,00136	S	29,437	0,99815	4,80842	0,51675	S	40,2188	0,99988	1,16952	0,89465	S	209,282	0,93691	56,0665	0,00031
	T	145,228	1	13,1402	0,49742	T	25,8714	0,99972	6,54869	0,37722	T	16,4064	1	6,0564	0,49287	T	102,95	1	0,53511	0,97256
	N	101,854	1	-5,51324	0,7747	N	16,039	1	-2,09914	0,77514	N	14,2222	1	3,48531	0,69123	N	71,5924	1	-6,89941	0,65606
	Q	127,543	1	-19,6212	0,31095	Q	12,2343	1	-6,35625	0,3914	Q	24,9884	1	4,05136	0,64643	Q	90,3204	1	-17,3163	0,26565
CONTROL	A	275,145	0,99997	5,67527	0,76947	A	56,5231	0,41786	10,0478	0,17547	A	36,8012	0,99998	8,98436	0,30902	A	181,821	0,99852	-13,3569	0,39055
	I	131,641	1	-22,2844	0,2492	I	24,5822	0,99987	-10,6552	0,15079	I	21,1974	1	0,31489	0,97156	I	85,8615	1	-11,9441	0,44166
	L	197,538	1	-28,5685	0,14014	L	22,4132	0,99997	-2,84671	0,70109	L	34,1793	1	-10,7669	0,2228	L	140,945	1	-14,9549	0,33638
	V	164,256	1	-13,4159	0,48844	V	23,582	0,99993	-4,91324	0,50765	V	35,4584	0,99999	2,2388	0,79989	V	105,216	1	-10,7415	0,48989
	F	145,28	1	-9,19004	0,63464	F	20,2589	1	-4,13733	0,57693	F	24,7953	1	-14,6199	0,09785	F	100,225	1	9,5672	0,53771
	W	81,3488	1	9,13389	0,63305	w	14,2621	1	6,06124	0,41376	w	11,9919	1	-2,84992	0,74535	w	55,0948	1	5,92257	0,69863
	Y	137,628	1	-6,54392	0,73405	Y	19,4967	1	-14,9079	0,04441	r	19,1168	1	-2,46614	0,77868	r	99,0148	1	10,8301	0,48359
	M	85,777	1	-19,9739	0,29778	M	17,7007	1	0,66401	0,928	M	14,7746	1	-5,19602	0,55376	M	53,3018	1	-15,4419	0,31583
	C	104,193	1	-10,0069	0,59993	C	12,039	1	-6,06273	0,40935	C	16,4919	1	-0,77839	0,92932	C	75,6619	1	-3,16583	0,8357
	G	178,568	1	2,84623	0,88315	G	27,4145	0,99933	11,4667	0,12206	G	21,0289	1	-0,84	0,92423	G	130,125	1	-7,78046	0,61697
	P	427,888	0,03065	21,1201	0,27543	P	67,3212	0,12313	22,6067	0,0023	P	63,2568	0,88685	3,17688	0,71906	P	297,31	0,00879	-4,66352	0,76434

S12: Putative transit peptide region amino acid composition analysis results: The predicted "TP" region was compared to the predicted mature chain of the same sequence. This was performed a) for both experimental and control protein sets (two rows of tables), b) for the whole sets of 375 proteins regardless of their classification as well as for each subset representing a class of preproteins (four columns of tables), and c) for each amino acid (twenty rows in each table). x^{2} sums and their respective p-values, as well as normalized x^{2} sums (sum of x^{2} with plus or minus sign depending on the positive or negative value of its residual) and their p-values are shown in each table. P-values lower than 0.01 are colored in yellow, p-values lower than 0.00001 are colored in light orange.

 frequency in the "TP" region is higher or lower than expected, colored bars represent statistically significant differencies with $p<0.01$ (lighter blue) and $p<0.00001$ (darker blue).

[^0]: $C / M \log 10$ ratio >3
 C/M $\log 10$ ratio 2-2.99$C / M \log 10$ ratio 1-1.99$C / M \log 10$ ratio $0-0.99$undeterminedRNA/DNA evidenceprobably missingcoded in plastid genome

 - doesn't start with $\mathrm{M}=$ incomplete N -terminus
 - starts with $M=$ probably but not certainly complete N-terminus
 \square no signal predicted
 \square signal peptide predicted
 - chloroplast transit peptide predicted
 - full bipartite signal predicted
 evolutionary origin:
 green algae
 13 red algae
 1 brown algae
 haptophytes
 cryptophytes
 chlorarachniophytes

 1) bacteria

 1 discobes
 unresolved: green algae or chlorarachniophytes
 B unresolved: secondary red algae
 U unresolved: algae
 (\#) protein identifier

